• *Klein, A.S., *Leiss-Maier, F., Mühlhofer, R., Boesen, B., Mustafa, G., Kugler, H., Zeymer, C. (2024) "A de novo metalloenzyme for cerium photoredox catalysis" ChemRxiv DOI


  • *Singer, H., *Steudtner, R., Klein, A.S., Rulofs, C., Zeymer, C., Drobot, B., Pol, A., Martinez-Gomez, N.C., Op den Camp, H.J.M., Daumann, L.J. (2023) "Minor actinides can replace essential lanthanides in bacterial life" Angewandte Chemie International Edition 62, e202303669 DOI


  • Zeymer, C. (2022) "Trendbericht Biochemie 2022" (in German), Nachrichten aus der Chemie 70, 7/8, 70-73 DOI


  • *Singer, H., *Drobot, B., Zeymer, C., Steudner, R., and Daumann, L. (2021) "Americium preferred: Lanmodulin, a natural lanthanide-binding protein favors an actinide over lanthanides.", Chemical Science 12, 15581-15587, DOI
  • Coulther, T.A.,  Pott, M.,  Zeymer, C., Hilvert, D., and Ondrechen, M.J. (2021) "Analysis of electrostatic coupling throughout the laboratory evolution of a designed retroaldolase", Protein Science 30, 1617-1627 DOI
  • Klein, A.S. and Zeymer, C. (2021) "Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis", Protein Engineering, Design & Selection 34, gzab003 DOI


  • *Caldwell, S.J., *Haydon, I.C., Piperidou, N., Huang, P.S., Bick, M.J., Sjöström, H.S., Hilvert, D., Baker, D., Zeymer, C. (2020) "Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion", Proceedings of the National Academy of Sciences 117, 30362-30369 DOI
  • Hofmann, R., Akimoto, G., Wucherpfennig, T.G., Zeymer, C., Bode, J.W. (2020) "Lysine Acylation Using Conjugating Enzymes for Site-Specific Modification and Ubiquitination of Recombinant Proteins", Nature Chemistry 12, 1008-1015 DOI


  • Bunzel, H.A., Kries, H., Marchetti, L., Zeymer, C., Mittl, P.R.E., Mulholland, A.J., and Hilvert, D. (2019) "Emergence of a Negative Activation Heat Capacity During Evolution of a Designed Enzyme", Journal of the American Chemical Society 141, 11745-11748 DOI
  • Zeymer, C. (2019) “Book Review: Directed Evolution of Selective Enzymes: Catalysts for Organic Chemistry and Biotechnology by Manfred T. Reetz”, ChemBioChem 20, 415-416 DOI


  • Zeymer, C. and Hilvert, D. (2018) “Directed Evolution of Protein Catalysts”, Annual Review of Biochemistry 87, 131-157 DOI
  • *Rosam, M., *Krader, D., *Nickels, C., Hochmair, J., Back, K.C., Agam, G., Barth, A., Zeymer, C., Hendrix, J., Schneider, M., Antes, I., Reinstein, J., Lamb, D.C., and Buchner, J. (2018) “Bap (Sil1) Regulates the Molecular Chaperone BiP by Coupling Release of Nucleotide and Substrate”, Nature Structural & Molecular Biology 25, 90-100 DOI


  • Zeymer, C., Zschoche, R., and Hilvert, D. (2017) „Optimization of Enzyme Mechanism along the Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase”, Journal of the American Chemical Society 139, 12541-12549 DOI


  • *Obexer, R., *Pott, M., *Zeymer, C., Griffiths, A.D., and Hilvert, D. (2016) „Efficient Laboratory Evolution of Computationally Designed Enzymes with Low Starting Activities Using Fluorescence-Activated Droplet Sorting”, Protein Engineering, Design & Selection 29, 355-366 DOI

  • *Zeymer, C., *Werbeck, N.D., Zimmermann, S., Reinstein, J., and Hansen, D.F. (2016) “Characterizing Active Site Conformational Heterogeneity along the Trajectory of an Enzymatic Phosphoryl Transfer Reaction”, Angewandte Chemie International Edition 55, 11533-11537 DOI


  • Zeymer, C., Fischer, S., and Reinstein, J. (2014) “trans-Acting Arginine Residues in the AAA+ Chaperone ClpB Allosterically Regulate the Activity Through Inter- and Intra-Domain Communication”, Journal of Biological Chemistry 289, 32965-32976 DOI
  • Dikfidan, A., Loll, B., Zeymer, C., Magler, I., Clausen, T. and Meinhart, A. (2014) “RNA Specificity and Regulation of Catalysis in the Eukaryotic Polynucleotide Kinase Clp1”, Molecular Cell 54, 975-986 DOI
  • Zeymer, C., Barends, T.R.M., Werbeck, N.D., Schlichting, I., and Reinstein, J. (2014) “Elements in Nucleotide Sensing and Hydrolysis of the AAA+ Disaggregation Machine ClpB – A Structure-Based Mechanistic Dissection of a Molecular Motor”, Acta Crystallographica Section D, Biological Crystallography 70, 582-595 DOI


  • Zeymer, C., Werbeck, N.D., Schlichting, I., and Reinstein, J. (2013) “The Molecular Mechanism of Hsp100 Chaperone Inhibition by the Prion Curing Agent Guanidinium Chloride”, Journal of Biological Chemistry 288, 7065-7076 DOI


  • Werbeck, N.D., Zeymer, C., Kellner, J.N., and Reinstein, J. (2011) “Coupling of Oligomerization and Nucleotide Binding in the AAA+ Chaperone ClpB”, Biochemistry 50, 899-909 DOI
  • Hernandez, J.A., Phillips, A.H., Erbil, W.K., Zhao, D., Demuez, M., Zeymer, C., Pelton, J.G., Wemmer, D.E., and Rubio, L.M. (2011) “A Sterile α-Motif Domain in NafY Targets apo-NifDK for Iron-Molybdenum Cofactor Delivery via a Tethered Domain”, Journal of Biological Chemistry 286, 6321-6328 DOI

* equal contribution