Publications Prof. Dr. Michael Groll

Google Scholar Profile of Prof. Dr. Michael Groll

2023

[200]  Ecker F., Vattekkatte A., Boland W., Groll M.
Metal-dependent enzyme symmetry guides the biosynthetic flux of terpene precursors
Nat. Chem., 15, 1188-95 PDF

[199]  Dienemann J. N., Chen S. Y., Hitzenberger M., Sievert M. L., Hacker S. M., Prigge S. T., Zacharias M., Groll M., Sieber SA.
A Chemical Proteomic Strategy Reveals Inhibitors of Lipoate Salvage in Bacteria and Parasites
Angew. Chem. Int. Ed., 62 (e202206168), 1-9 PDF

[198]  Kaspers M., Pogenberg V., Pett C., Ernst S., Ecker F., Ochtrop P., Groll M., Hedberg C., Itzen A.
Dephosphocholination by Legionella effector Lem3 functions through remodelling of the switch II region of Rab1b
Nat. Commun., 14, 1-15 PDF

[197]  Huber E. M., Kreling L., Heinrich A. K., Dünnebacke M., Pöthig A., Bode H.B., Groll M.
A set of closely related methyltransferases for site-specific tailoring of anthraquinone pigments
Structure, 31, 573-83 PDF

[196]  Fraley A. E., Dell M., Schmalhofer M., Meoded R. A., Bergande C., Groll M., Piel J.
Heterocomplex structure of a polyketide synthase component involved in modular backbone halogenation
Structure, 31, 565-72 PDF

[195]  Mordhorst S., Badmann T., Bösch N. M., Morinaka B. I., Rauch H., Piel J., Groll M., Vagstad A. L.
Structural and Biochemical Insights into Post-Translational Arginine-to-Ornithine Peptide Modifications by an Atypical Arginase
ACS Chem. Biol., 18, 528-36 PDF

2022

[194]  Auman D., Ecker F., Mader S., Dorst K., Bräuer A., Widmalm G., Groll M., Kaila V. 
Peroxy intermediate drives carbon bond activation in the dioxygenase AsqJ
J. Am. Chem. Soc., 2022, 144, 15622-32 PDF

[193]  Gude F., Molloy E. M., Horch T., Dell M., Dunbar K. L., Krabbe J., Groll M., Hertweck C. 
A Specialized Polythioamide-Binding Protein Confers Antibiotic Self-Resistance in Anaerobic Bacteria
Angew. Chem. Int. Ed., 61 (e202206168), 1-9 PDF

[192]  Trottmann F., Ishida K., Ishida-Ito M., Kries H., Groll M., Hertweck C. 
Pathogenic bacteria remodel central metabolic enzyme to build a cyclopropanol warhead
Nat. Chem., 2022, 14, 884-90 PDF

[191]  Baudrexl M., Fida T., Berk B., Schwarz W. H., Zverlov V. V., Groll M., Liebl W. 
Biochemical and Structural Characterization of Thermostable GH159 Glycoside Hydrolases Exhibiting α-L-Arabinofuranosidase Activity
Front. Mol. Biosci., 2022, 9 (907439), 1-15 PDF

[190]  Beaumet M., Dose A., Bräuer A., Mahy J. P., Ghattas W., Groll M., Hess C. R. 
An artificial metalloprotein with metal-adaptive coordination sites and Ni-dependent quercetinase activity
J. Inorg. Biochem., 2022, 235 (111914), 1-5 PDF

[189]  Huber E. M., Hortschansky P., Scheven M. T., Misslinger M., Haas H., Brakhage A. A., Groll M. 
Structural insights into cooperative DNA recognition by the CCAAT-binding complex and its bZIP transcription factor HapX
Structure, 2022, 30, 34–946 PDF

[188]  Shi Y.M., Hirschmann M., Shi Y. N., Ahmed S., Abebew D., Tobias N. J., Grün P., Crames J. J., Pöschel L., Kuttenlochner W., Richter C., Herrmann J., Müller R., Thanwisai A., Pidot S. J., Stinear T. P., Groll M., Kim Y., Bode H. B. 
Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria
Nat. Chem., 2022, 14, 701–12 PDF

2021

[187]  Huber E. M., Groll M.
A nut for every bolt: subunit-selective inhibitors of the immunoproteasome and their therapeutic potential
Cells, 2021, 10 (1929), 1-22, PDF

[186]  Scherlach K., Kuttenlochner W., Scharf D. H., Brakhage A. A., Hertweck C., Groll M., Huber E. M.
Structural and mechanistic insights into C-S bond formation in gliotoxin
Angew. Chem. Int. Ed., 2021, 60, 14188-94PDF

[185]  Baumgart M., Röpke M., Mühlbauer M., Asami S., Mader S., Fredriksson K., Groll M., Gamiz-Hernandez A., Kaila V.
Design of Buried Charged Networks in Artificial Proteins
Nat. Commun., 2021, 12 (1895), 1-9, PDF

[184]  Zhao L., Le Chapelain C., Brachmann A. O., Kaiser M., Groll M., Bode H.B. 
Activation, Structure, Biosynthesis and Bioactivity of Glidobactin-like Proteasome Inhibitors from Photorhabdus laumondi
ChemBioChem., 2021, 22, 1582-88, PDF

2020

[183]  Hortschansky P., Misslinger M., Mörl J., Gsaller F., Bromley M., Brakhage A., Groll M., Haas H., Huber E. M.
Structural basis of HapE-P88L-linked antifungal triazole resistance in Aspergillus fumigatus
Life Sci. Alliance, 2020, 3 (e202000729), 1-12, PDF

[182]  Vieweg S., Mulholland K., Bräuning B., Kachariya N., Lai Y. C., Toth R., Singh P. K., Volpi I., Sattler M., Groll M., Itzen A., Muqit M. M. K.
PINK1-dependent phosphorylation of Serine111 within the SF3 motif of Rab GTPases impairs effector interactions and LRRK2-mediated phosphorylation at Threonine72
Biochem. J., 2020, 477, 1651-68, PDF

[181]  Moosmann P., Ecker F., Leopold-Messer S., Cahn J. K. B., Dieterich C. L., Groll M., Piel J.
A monodomain class II terpene cyclase assembles complex isoprenoid scaffolds
Nat. Chem., 2020, 12, 968-972 PDF

[180]  Bräuer A., Zhou Q., Grammbitter G. L. C., Schmalhofer M., Rühl M., Kaila V. R. I., Bode H. B., Groll M.
Structural Snapshots of the Minimal PKS System Responsible for Octaketide Biosynthesis
Nat. Chem., 2020, 12, 755-63, PDF

[179]  Vogler M., Karan R., Renn D., Vancea A., Vielberg M.-T., Grötzinger S. W., DasSarma P., DasSarma S., Eppinger J., Groll M., Rueping M.
Crystal Structure and Active Site Engineering of a Halophilic γ-Carbonic Anhydrase
Front. Microbiol., 2020, 11, 1-12, PDF

[178]  Malik I. T., Pereira R., Vielberg M.-T., Mayer C., Straetener J., Thomy D., Famulla K., Castro H., Sass P., Groll M., Brötz-Oesterhelt H.
Functional characterisation of ClpP mutations conferring resistance to acyldepsipeptide antibiotics in Firmicutes
ChemBioChem., 2020, 21, 1997-2012, PDF

[177]  Ernst S., Ecker F., Kaspers M. S., Ochtrop P., Hedberg C., Groll M., Itzen A.
Legionella effector AnkX displaces the switch II region for Rab1b phosphocholination
Sci. Adv., 2020, 6 (eaaz8041), 1-14, PDF

[176]  Kazman P., Vielberg M.-T., Pulido Cendales M. D., Hunziger L., Weber B., Hegenbart U., Zacharias M., Köhler R., Schönland S., Groll M., Buchner, J.
A patient-derived antibody light chain shows fatal amyloid formation caused by a single point mutation
Elife, 2020, 9 (e52300), 1-23, PDF

[175]  Badmann T., Groll M.
Atomic resolution structures of tetrahydrofolate methylation in the desulfitobacterial glycine betaine metabolism
ChemBioChem., 2020, 21, 776-9, PDF

2019

[174]  Fischer J., Renn D., Quitterer F., Radhakrishnan A., Liu M., Makki A., Ghorpade S., Rueping M., Arold S. T., Groll M., Eppinger J.
A Robust and Versatile Host Protein for the Design and Evaluation of Artificial Metal Centers
ACS Catal., 2019, 9, 11371−80, PDF

[173]  Hohl A., Karan R., Akal A., Renn D., Liu X., Ghorpade S., Groll M., Rueping M., Eppinger J.
Engineering a Polyspecific Pyrrolysyl-tRNA Synthetase by a High Throughput FACS Screen
Sci. Rep., 2019, 9 (11971), 1-9, PDF

[172]  Grammbitter G. L. C., Schmalhofer M., Karimi K., Schöner T., Tobias N. J., Morgner N., Groll M., Bode H. B.
An Uncommon Type II PKS Catalyzes Biosynthesis of Aryl Polyene Pigments
J. Am. Chem. Soc., 2019, 141, 16615-23, PDF

[171]  Zhou Q., Bräuer A., Adihou H., Schmalhofer M., Saura P., Grammbitter G. L. C., Kaila V., Groll M., Bode H. B.
Molecular mechanism of polyketide shortening in anthraquinone biosynthesis of Photorhabdus luminescens
Chem Sci., 2019, 10, 6341-9, PDF

[170]  Hohl A., Mideksa Y. G., Karan R., Akal A., Vogler M., Groll M., Rueping M., Lang K., Feige M. J., Eppinger J.
Genetically encoded biotin analogs: Incorporation and application in bacterial and mammalian cells
ChemBioChem., 2019, 20, 1795-8, PDF

[169]  Schopf F. H., Huber E. M., Dodt C., Lopez A., Biebl M. M., Rutz D. A., Mühlhofer M., Richter G., Madl T., Sattler M., Groll M., Buchner J.
The Co-chaperone Cns1 and the Recruiter Protein Hgh1 Link Hsp90 to Translation Elongation via Chaperoning Elongation Factor 2
Mol. Cell, 2019, 74, 73-87, PDF

[168]  Xin B.-T., Huber E. M., de Bruin G., Heinemeyer H., Maurits E., Espinal C., Du Y., Janssens M., Weyburne E. S., Kisselev A. F., Florea B. I., Driessen C., van der Marel G. A., Groll M., Overkleeft H. S.
Structure-Based Design of Inhibitors Selective for Human Proteasome β2c or β2i Subunits
J. Med. Chem., 2019, 62, 1626-42, PDF

2018

[167] Bhatia S., Krieger V., Groll M., Osko J. D., Reßing N., Ahlert H., Borkhardt A., Kurz T., Christianson D. W., Hauer J., Hansen F. K.
Discovery of the First-in-Class Dual Histone Deacetylase-Proteasome Inhibitor
J. Med. Chem., 2018, 61, 10299-309, PDF

[166] Bräuning B., Groll M.
Structural and Mechanistic Features of ClyA-Like α-Pore-Forming Toxins
Toxins, 2018, 10 (9/343), 1-9, PDF

[165] Niroula D., Hallada L. P., Le Chapelain C., Ganegamage S. K., Dotson D., Rogelj S., Groll M., Tello-Aburto R.
Design, synthesis, and evaluation of cystargolide-based β-lactones as potent proteasome inhibitors
Eur. J. Med. Chem., 2018, 157, 962-977, PDF

[164] Ecker F., Haas H., Groll M., Huber E. M.
Iron scavenging in Aspergillus species: Structural and biochemical insights into fungal siderophore esterases
Angew. Chem. Int. Ed., 2018, 57 (44), 14624-9, PDF

[163] Groll M., Nguyen H., Vellalath S., Romo D.
(−)-Homosalinosporamide A and Its Mode of Proteasome Inhibition: An X-ray Crystallographic Study
Mar. Drugs, 2018, 16 (7/240), 1-9, PDF

[162] Treise I., Huber E. M., Klein-Rodewald T., Heinemeyer W., Grassmann S. A., Basler M., Adler T., Rathkolb B., Helming L., Andres C., Klaften M., Landbrecht C., Wieland T., Strom T. M., McCoy K. D., Macpherson A. J., Wolf E., Groettrup M., Ollert M., Neff F., Gailus-Durner V., Fuchs H., Hrabě de Angelis M., Groll M., Busch D. H.
Defective immuno- and thymoproteasome assembly causes severe immunodeficiency
Sci. Rep., 2018, 8 (5975), 1-18, PDF

[161] Bräuning B., Bertosin E., Praetorius F., Ihling C., Schatt A., Adler A., Richter K., Sinz A., Dietz H., Groll M.
Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB
Nat. Commun., 2018, 9 (1806), 1-14, PDF

[160] Mader S. L., Bräuer A., Groll M., Kaila V. R. I.
Catalytic Mechanism and Molecular Engineering of Quinolone Biosynthesis in Dioxygenase AsqJ
Nat. Commun., 2018, 9 (1168), 1-8, PDF

[159] DuBay K. H., Iwan K., Osorio-Planes L., Geissler P. L., Groll M., Trauner D., Broichhagen J.
A predictive approach for the optical control of carbonic anhydrase II activity
ACS Chem. Biol., 2018, 13, 793-800, PDF

[158] Vielberg M.-T., Bauer V. C., Groll M.
On the Trails of the Proteasome Fold: Structural and Functional Analysis of the Ancestral β-Subunit Protein Anbu
J. Mol. Biol., 2018, 430, 628-40, PDF

[157] Piasecka A., Czapinska H., Vielberg M.-T., Szczepanowski R., Kiefersauer R-, Reed S., Groll M., Bochtler M.
The Y. bercovieri Anbu crystal structure sheds light on the evolution of highly (pseudo)symmetric multimers
J. Mol. Biol., 2018, 430, 611-27, PDF

[156] Wachtel R., Bräuning B., Mader S., Ecker F., Kaila V., Groll M., Itzen A.
The protease GtgE from Salmonella exclusively targets inactive Rab GTPases
Nat. Commun., 2018, 9 (44), 1-13, PDF

[155] Groetzinger S., Karan R., Strillinger E., Bader S., Frank A., Al Rowaihi I., Wackerow W., Akal A., Archer J., Rueping M., Weuster-Botz D., Groll M., Eppinger J., Arold S.
Identification and experimental characterization of an extremophilic brine pool alcohol dehydrogenase from single amplified genomes
ACS Chem. Biol., 2018, 13, 161-70, PDF

2017

[154] Huber E. M., Groll M.
The Mammalian Proteasome Activator PA28 Forms an Asymmetric α4β3 Complex
Structure, 2017, 25, 1473–80, PDF

[153] Schwab A., Illarionov B., Frank A., Kunfermann A., Seet M., Bacher A., Witschel M., Fischer M., Groll M., Diederich F.
Mechanism of Allosteric Inhibition of the Enzyme IspD by Three Different Classes of Ligands
ACS Chem. Biol., 2017, 12, 2132-8, PDF

[152] Marion A., Groll M., Scharf D., Scherlach K., Glaser M., Sievers H., Schuster M., Hertweck C., Brakhage A., Antes I., Huber E. M.
Gliotoxin biosynthesis: Structure, mechanism and metal promiscuity of carboxypeptidase GliJ
ACS Chem. Biol., 2017, 12, 1874-82, PDF

[151] Annamalai K., Liberta F., Vielberg M.-T., Close W., Lilie H., Gührs K. Hl, Schierhorn A., Koehler R., Schmidt A., Haupt C., Hegenbart U., Schönland S., Schmidt M, Groll M., Fändrich M.
Common Fibril Structures Imply Systemically Conserved Protein Misfolding Pathways In Vivo
Angew. Chem. Int. Ed., 2017, 56, 7510-4, PDF

[150] Kugel S., Baunach M., Baer P., Ishida-Ito M., Sundarama S., Xua Z., Groll M., Hertweck C.
Cryptic indole hydroxylation by a non-canonical terpenoid cyclase parallels bacterial xenobiotic detoxification
Nat. Commun., 2017, 8 (15804), 1-13, PDF

[149] Frank A., Groll M.
The Methylerythritol Phosphate Pathway to Isoprenoids
Chemical Reviews, 2017, 117, 5675-703, PDF

[148] Cui H., Baur R., Le Chapelain C., Dubiella C., Heinemeyer W., Huber E. M., Groll M.
Structural Elucidation of a Nonpeptidic Inhibitor Specific for the Human Immunoproteasome
ChemBioChem., 2017, 18, 523-26, PDF

[147] Hortschansky P., Haas H., Huber E. M., Groll M., Brakhage A. A.
The CCAAT-binding complex (CBC) in Aspergillus species
Biochim. Biophys. Acta, 2017, 1860, 560-70, PDF

2016

[146] Huber E. M., Heinemeyer W., de Bruin G., Overkleeft H. S., Groll M.
A humanized yeast proteasome identifies unique binding modes of inhibitors for the immunosubunit β5i
EMBO J., 2016, 35, 2602-13, PDF

[145] Stingele J., Bellelli R., Alte F., Hewitt G., Sarek G., Maslen S. L., Tsutakawa S. E., Borg A., Kjaer S., Tainer J. A., Skehel J. M., Groll M., Boulton S. J.
Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-dependent Metalloprotease SPRTN
Mol. Cell, 2016, 64, 688–703, PDF

[144] Dubiella C., Cui H., Groll M.
Tunable Probes with Direct Fluorescence Signals for the Constitutive and Immunoproteasome
Angew. Chem. Int. Ed., 2016, 55, 13330-4, PDF

[143] Frank A., Seel C. J., Groll M., Gulder T.
Characterization of a Cyanobacterial Haloperoxidase and Evaluation of its Biocatalytic Halogenation Potential
ChemBioChem, 2016, 17, 2028-32, PDF

[142] Xin B. T., de Bruin G., Huber E. M., Besse A., Florea B. I., Filippov D. V., van der Marel G. A., Kisselev A. F., van der Stelt M., Driessen C., Groll M., Overkleeft H. S.
Structure-Based Design of β5c Selective Inhibitors of Human Constitutive Proteasomes
J. Med. Chem., 2016, 59, 7177-87, PDF

[141] Le Chapelain C., Groll M.
Rational Design of Proteasome Inhibitors as Antimalarial Drugs
Angew. Chem. Int. Ed., 2016, 55, 6370-2, PDF

[140] Huber E. M., Heinemeyer W., Li X., Arendt C. A., Hochstrasser M., Groll M.
A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome
Nat. Commun., 2016, 7 (10900), 1-10, PDF

[139] Duell E. R., Glaser M., Le Chapelain C., Antes I., Groll M., Huber E. M.
Sequential Inactivation of Gliotoxin by the S-Methyltransferase TmtA
ACS Chem. Biol., 2016, 11, 1082-9, PDF

[138] Bräuer A., Beck P., Hintermann L., Groll M.
Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis
Angew. Chem. Int. Ed., 2016, 55, 422-6, PDF

2015

[137] Pahl A., Lakemeyer M., Vielberg M.-T., Hackl M. W., Vomacka J., Korotkov V. S., Stein M. L., Fetzer C., Lorenz-Baath K., Richter K., Waldmann H., Groll M., Sieber S. A.
Reversible Inhibitors Arrest ClpP in a Defined Conformational State that Can Be Revoked by ClpX Association
Angew. Chem. Int. Ed., 2015, 54, 15892-6, PDF

[136] Dubiella C., Baur R., Cui H., Huber E. M., Groll M.
Selective Inhibition of the Immunoproteasome by Structure-Based Targeting of a Non-catalytic Cysteine
Angew. Chem. Int. Ed., 2015, 54, 15888-91, PDF

[135] Beck P., Cui H., Hegemann J. D., Marahiel M. A., Krüger, Groll M.
Targeted Delivery of Proteasome Inhibitors to Somatostatin-Receptor-Expressing Cancer Cells by Octreotide Conjugation
ChemMedChem, 2015, 10, 1969-73, PDF

[134] Beck P., Reboud-Ravaux M., Groll M.
Identification of a β1/β2-Specific Sulfonamide Proteasome Ligand by Crystallographic Screening
Angew. Chem. Int. Ed., 2015, 54, 11275-8, PDF

[133] Runtsch L.S., Barber D.M., Mayer P., Groll M., Trauner D., Broichhagen J.
Azobenzene-based inhibitors of human carbonic anhydrase II
Beilstein J. Org. Chem., 2015, 11, 1129–35, PDF

[132] Keller L., Plaza A., Dubiella C., Groll M., Kaiser M., Müller R.
Macyranones: Structure, Biosynthesis, and Binding Mode of an Unprecedented Epoxyketone that Targets the 20S Proteasome
J. Am. Chem. Soc., 2015, 137, 8121-30, PDF

[131] Huber E. M., de Bruin G., Heinemeyer W., Paniagua Soriano G., Overkleeft H. S., Groll M.
Systematic Analyses of Substrate Preferences of 20S Proteasomes Using Peptidic Epoxyketone Inhibitors
J. Am. Chem. Soc., 2015, 137, 7835-42, PDF

[130] Groll M., Korotkov V. S., Huber E. M., de Meijere A., Ludwig A.
A Minimal β-Lactone Fragment for Selective β5c or β5i Proteasome Inhibitors
Angew. Chem. Int. Ed., 2015, 54, 7810-4, PDF

[129] Fleckenstein T., Kastenmüller A., Stein M. L., Peters C., Daake M., Krause M., Weinfurtner D., Haslbeck M., Weinkauf S., Groll M., Buchner J.
The Chaperone Activity of the Developmental Small Heat Shock Protein Sip1 Is Regulated by pH-Dependent Conformational Changes
Mol. Cell, 2015, 58, 1067–78, PDF

[128] Haslbeck V., Drazic A., Eckl J. M., Alte F., Helmuth M., Popowicz G., Schmidt W., Braun F., Weiwad M., Fischer G., Gemmecker G., Sattler M., Striggow F., Groll M., Richter K.
Selective activators of protein phosphatase 5 target the autoinhibitory mechanism
Biosci. Rep., 2015, 35, 1–11, PDF

[127] Quitterer F., Frank A., Wang K., Rao G., O'Dowd B., Li J., Guerra F., Abdel-Azeim S., Bacher A., Eppinger J., Oldfield E., Groll M.
Atomic-Resolution Structures of Discrete Stages on the Reaction Coordinate of the [Fe4S4] Enzyme IspG (GcpE)
J. Mol. Biol., 2015, 427, 2220-8, PDF

[126] Gersch M., Hackl M., Dubiella C., Dobrinevski A., Groll M., Sieber S. A.
A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, and inhibitor binding
Chem. & Biol., 2015, 22, 404-11, PDF

[125] Dahmen M., Vielberg M.-T., Groll M., Sieber S. A.
Structure and mechanism of the caseinolytic protease ClpP1/2 heterocomplex from Listeria monocytogenes
Angew. Chem. Int. Ed., 2015, 54, 3598-602, PDF

[124] Beck P., Lansdell T. A., Hewlett N. M., Tepe J. J., Groll M.
Indolo-Phakellins as β5-specific Noncovalent Proteasome Inhibitors
Angew. Chem. Int. Ed., 2015, 54, 2830–3, PDF

[123] Huber E. M., Heinemeyer W., Groll M.
Bortezomib-resistant mutant proteasomes: structural and biochemical evaluation with carfilzomib and ONX 0914
Structure, 2015, 23, 407–17, PDF

2014

[122] Marelli U. K., Frank A. O., Wahl B., La Pietra V., Novellino E., Marinelli L., Herdtweck E., Groll M., Kessler H. (2014) Receptor-bound conformation of cilengitide better represented by its solution-state structure than the solid-state structure
Chemistry, 2014, 20, 14201–6, PDF

[121] Dubiella C., Cui H., Gersch M., Brouwer A. J., Sieber S. A., Krüger A., Liskamp R. M. J., Groll M.
Selective Inhibition of the Immunoproteasome by Ligand-Induced Crosslinking of the Active Site
Angew. Chem. Int. Ed., 2014, 53, 11969–73, PDF

[120] Voss C., Scholz C., Knorr S., Beck P., Stein M. L., Zall A., Kuckelkorn U., Kloetzel P.-M., Groll M., Hamacher K. and Schmidt B. 
α-Keto Phenylamides as P1'-Extended Proteasome Inhibitors
ChemMedChem, 2014, 9, 2557-64, PDF

[119] Beck P., Heinemeyer W., Späth A.-L., Elnakady Y., Müller R., Groll M.
Interactions of the natural product kendomycin and the 20S proteasome
J. Mol.  Biol., 2014, 426, 3108-17, PDF

[118] de Bruin G., Huber E. M., Xin B. T., van Rooden E. J., Al-Ayed K., Kim K. B., Kisselev A. F., Driessen C., van der Stelt M., van der Marel G. A., Groll M., Overkleeft H. S.
Structure-based design of either ß1i oder ß5i specific inhibitors of human immunoproteasomes
J. Med. Chem., 2014, 57, 6197-209, PDF

[117] Arciniega M., Beck P., Lange O. F., Groll M., Huber R.
Differential global structural cheanges in the core particle of the yeast and mouse proteasome induced by ligand binding
Proc. Natl. Acad. Sci. USA, 2014, 111, 9479-84, PDF

[116] Span I., Wang K., Eisenreich W., Bacher A., Zhang Y, Oldfield E., Groll M.
Insights into the Binding of Pyridines to the Iron-Sulfur Enzyme ISPH
J. Am Chem Soc., 2014, 22, 7926-32, PDF

[115] Trivella D. B., Pereira A., Stein M. L., Byrum T., Valeriote F., Groll M., Gerwick W. H., Moore B. S.
Enzyme inhibition by hydroamination: design and mechanism of a hybrid carmaphycin-syringolin enone proteasome inhibitor
Chem. & Biol., 2014, 21, 782-91, PDF

[114] Baer P., Rabe P., Fischer K., Citron C. A., Klapschinski T. A., Groll M., Dickschat J. S.
Induced Fit Mechanism in Class I Terpene Cyclases
Angew. Chem. Int. Ed., 2014, 53, 7652-6, PDF

[113] Feige M. J., Gräwert M. A., Marcinowski M., Hennig J., Behnke J., Ausländer D., Herold E. M., Peschek J., Castro C. D., Flajnik M. F., Hendershot L. M., Sattler M., Groll M., Buchner J.
The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins
Proc. Natl. Acad. Sci. USA, 2014, 111, 8155-60, PDF

[112] Quitterer F., Beck P., Bacher A., Groll M.
The formation of Pyrroline and tetrahydropyridine rings in amino acids catalyzed by pyrrolysine synthase (PylD)
Angew. Chem. Int. Ed., 2014, 53, 8150-3, PDF

[111]   Berthelmann A., Lach J., Gräwert M. A., Groll M., Eichler J.
Versatile C3-symmetric scaffolds and their use for covalent stabilization of the foldon trimer
Org. Biomol. Chem., 2014, 12, 2606-14, PDF

[110]   Weiz A. R., Ishida K., Quitterer F., Meyer S., Kehr J., Müller K., Groll M., Hertweck C., Dittmann E.
Harnessing the Evolvability of Tricyclic Microviridins To Dissect Protease–Inhibitor Interactions
Angew. Chem. Int. Ed., 2014, 53, 3735-8, PDF

[109]   Kunfermann A., Witschel M., Illarionov B., René M., Rottmann M., Höffken W., Seet M., Eisenreich W., Knölker H-J., Fischer M., Bacher A., Groll M., Diederich F.
Pseudilins: Halogenated, Allosteric Inhibitors of the Non-Mevalonate Pathway Enzyme IspD
Angew. Chem. Int. Ed., 2014, 53, 2235–9, PDF

[108]  Scharf D. H., Groll M., Habel A., Heinekamp T., Hertweck C., Brakhage A. A., Huber E. M.
Flavoenzyme-Catalyzed Formation of Disulfide Bonds in Natural Products
Angew. Chem. Int. Ed., 2014, 53, 2221–4, PDF

[107] Stein M. L., Cui H., Beck P., Dubiella C., Voss C., Krüger A., Schmidt B., Groll M.
Systematic Comparison of Peptidic Proteasome Inhibitors Highlights the α-Ketoamide Electrophile as an Auspicious Reversible Lead Motif
Angew. Chem. Int. Ed., 2014, 53, 1679-83, PDF

[106] Gersch M., Kolb R., Alte F., Groll M., Sieber S. A.
Disruption of Oligomerization and Dehydroalanine Formation as Mechanisms for ClpP Protease Inhibition
J. Am. Chem. Soc., 2014, 136, 1360−6, PDF

[105] Baer P., Rabe P., Citron C. A., de Oliveira Mann C. C., Kaufmann N., Groll M., Dickschat J. S.
Hedycaryol Synthase in Complex with Nerolidol Reveals Terpene Cyclase Mechanism
ChemBioChem., 2014, 15, 213-6, PDF

[104] List A., Zeiler E., Gallastegui N., Rusch M, Hedberg C, Sieber S. A., Groll M.
Omuralide and Vibralactone: Differences in the Proteasome- β-Lactone-γ-Lactam Binding Scaffold Alter Target Preferences
Angew. Chem. Int. Ed., 2014, 53, 571-4, PDF

[103] Stein M. L., Groll, M.
Applied techniques for mining natural proteasome inhibitors
Biochim. Biophys. Acta., 2014, 1843, 26-38, PDF

2013

[102] Kunfermann A., Lienau C., Illarionov B., Held J., Gräwert T., Behrendt C. T., Werner P., Hähn S., Eisenreich W., Riederer U., Mordmüller B., Bacher A., Fischer M., Groll M., Kurz T.
IspC as Target for Antiinfective Drug Discovery: Synthesis, Enantiomeric Separation, and Structural Biology of Fosmidomycin Thia Isosters
J. Med. Chem., 2013, 56, 8151–62, PDF

[101] Zeiler E., List A., Alte F., Gersch M., Wachtel R., Poreba M., Drag M., Groll M., Sieber S. A.
Structural and functional insights into caseinolytic proteases reveal an unprecedented regulation principle of their catalytic triad
Proc. Natl. Acad. Sci. USA, 2013, 110, 11302-7, PDF

[100] Quitterer F., Beck P., Bacher A., Groll M.
Structure and reaction mechanism of pyrrolysine synthase (PylD)
Angew. Chem. Int. Ed., 2013, 52, 7033-7, PDF

[99] Span I., Wang K., Wang W., Jauch J., Eisenreich W., Bacher A., Oldfield E., Groll M.
Structures of fluoro, amino, and thiol inhibitors bound to the [Fe4S4] protein IspH
Angew. Chem. Int. Ed., 2013, 52, 2118-21, PDF

[98] Müller R., Gräwert M. A., Kern T., Madl T., Peschek J., Sattler M., Groll M., Buchner J.
High-resolution structures of the IgM Fc domains reveal principles of its hexamer formation
Proc. Natl. Acad. Sci. USA, 2013, 110, 10183-8, PDF

[97] Kawamura S., Unno Y., List A., Mizuno A., Tanaka M., Sasaki T., Arisawa M., Asai A., Groll M., Shuto S.
Potent proteasome inhibitors derived from the unnatural cis-cyclopropane isomer of Belactosin A: synthesis, biological activity, and mode of action
J. Med. Chem., 2013, 56, 3689-700, PDF

[96] Desvergne A., Genin E., Maréchal X., Gallastegui N., Dufau L., Richy N., Groll M., Vidal J., Reboud-Ravaux M.
Dimerized linear mimics of a natural cyclopeptide (TMC-95A) are potent noncovalent inhibitors of the eukaryotic 20S proteasome
J. Med. Chem., 2013, 56, 3367-78, PDF

[95] Geurink P. P., van der Linden W. A., Mirabella A. C., Gallastegui N., de Bruin G., Blom A. E., Voges M. J., Mock E. D., Florea B. I., van der Marel G. A., Driessen C., van der Stelt M., Groll M., Overkleeft H. S., Kisselev A. F.
Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites
J. Med. Chem., 2013, 56, 1262-75, PDF

2012

[94] Bepperling A., Alte F., Kriehuber T., Braun N., Weinkauf S., Groll M., Haslbeck M., Buchner J. 
Alternative bacterial two-component small heat shock protein systems
Proc. Natl. Acad. Sci. USA, 2012, 109, 20407-12, PDF

[93] Brouwer A. J., Jonker A., Werkhoven P., Kuo E., Li N., Gallastegui N., Kemmink J., Florea B. I., Groll M., Overkleeft H., Liskamp R. M. 
Peptido sulfonyl fluorides as new powerful proteasome inhibitors
J. Med. Chem., 2012, 55, 10995-1003, PDF

[92] Quitterer F., List A., Beck P., Bacher A., Groll M.
Biosynthesis of the 22nd Genetically Encoded Amino Acid Pyrrolysine: Structure and Reaction Mechanism of PylC at 1.5 Å Resolution
J. Mol. Biol., 2012, 424, 270-82, PDF

[91] Stein M. L., Beck P., Kaiser M., Dudler R., Becker C. F., Groll M.
One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor
Proc. Natl. Acad. Sci. USA, 2012, 109, 18367-71, PDF

[90] Huber E. M., Scharf D. H., Hortschansky H. H., Groll M., Brakhage A. A.
DNA Minor Groove Sensing and Widening by the CCAAT-Binding Complex.
Structure, 2012, 20, 1757–68, PDF

[89] Beck P., Dubiella C., Groll M.
Covalent and non-covalent reversible proteasome inhibition.
Biol. Chem. 2012, 393, 1101-20, PDF

[88] Archer C. R., Groll M., Stein M. L., Schellenberg B., Clerc J., Kaiser M., Kondratyuk T. P., Pezzuto J. M., Dudler R., Bachmann A. S. 
Activity Enhancement of Synthetic Syrbactin Proteasome Inhibitor Hybrid and Biological Evaluation in Tumor Cells
Biochemistry, 2012, 51, 6880-8, PDF

[87] Span I., Wang K., Wang W., Zhang Y., Bacher A., Eisenreich W., Li K., Schulz C., Oldfield E., Groll M. 
Discovery of Acetylene Hydratase Activity of the Iron-Sulfur Protein IspH
Nat. Commun.2012, 3 (1042), 1-8, PDF

[86] Huber E. M., Groll M. 
Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development
Angew. Chem. Int. Ed., 2012, 51, 8708–20, PDF

[85] Wang W., Wang K., Span I., Jauch J., Bacher A., Groll M., Oldfield E.
Are Free Radicals Involved in IspH Catalysis? An EPR and Crystallographic Investigation
J. Am. Chem. Soc., 2012, 134, 11225-34, PDF

[84] Gersch M., List A., Groll M., Sieber S. A. 
Insights into the structural network responsible for oligomerization and activity of the bacterial virulence regulator caseinolytic protease P (ClpP)
J. Biol. Chem., 2012, 287, 9484-94, PDF

[83] Schmid A. B., Lagleder S., Gräwert M. A., Röhl A., Hagn F., Wandinger S. K., Cox M. B., Demmer O., Richter K., Groll M., Kessler H., Buchner J. 
The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop
EMBO J., 2012, 31, 1506-17, PDF

[82] Huber E. M., Groll, M.
The 19S Cap Puzzle: A New Jigsaw Piece
Structure, 2012, 20, 387-8, PDF

[81] Gallastegui N., Groll M. 
Analysing properties of proteasome inhibitors using kinetic and x-ray crystallographic studies
Methods Mol. Biol., 2012, 832, 373-90, PDF

[80] Huber E. M., Basler M., Schwab R., Heinemeyer W., Kirk C., Groettrup M., Groll M.
Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity
Cell,  2012, 148, 727–38, PDF

[79] Span I., Gräwert T., Bacher A., Eisenreich W., Groll M.
Crystal structures of mutant IspH proteins reveal a rotation of the substrate's hydroxymethyl group during catalysis
J. Mol. Biol., 2012, 416, 1-9, PDF

[78] Gallastegui N., Beck P., Arciniega M., Huber R., Hillebrand S., Groll M.
Hydroxyureas as noncovalent proteasome inhibitors
Angew. Chem. Int. Ed., 2012, 51, 247-9, PDF

[77] Quitterer F., List A., Eisenreich W., Bacher A., Groll M. 
Crystal Structure of Methylornithine Synthase (PylB): Insights into the Pyrrolysine Biosynthesis
Angew. Chem. Int. Ed., 2012, 51, 1339-42, PDF

[76] Gräwert M. A., Groll, M.
Exploiting nature's rich source of proteasome inhibitors as starting points in drug development
Chem. Commun., 2012, 48, 1364-78, PDF

2011

[75] Behrendt C. T., Kunfermann A., Illarionova V., Matheeussen A., Pein M. K., Gräwert T., Kaiser J., Bacher A., Eisenreich W., Illarionov B., Fischer M., Maes L., Groll M., Kurz T.
Reverse fosmidomycin derivatives against the antimalarial drug target IspC (Dxr)
J. Med. Chem., 2011, 54, 6796-802, PDF

[74] Groll M., Potts B. C.
Proteasome Structure, Function, and Lessons Learned from Beta-Lactone Inhibitors
Curr. Top. Med. Chem., 2011, 11, 2850-78, PDF

[73] Gräwert T., Groll M., Rohdich F., Bacher A., Eisenreich W.
Biochemistry of the non-mevalonate isoprenoid pathway
Cell Mol. Life Sci., 2011, 68, 3797-814, PDF

[72] Korotkov, V. S. Ludwig, A., Larionov, O., Lygin, A., Groll M., de Meijere, A.
Synthesis and biological activity of optimized belactosin C congeners
Org. Biomol. Chem., 2011, 22, 7791-8, PDF

[71] Potts B. C., Albitar M. X., Anderson K. C., Baritaki S., Berkers C., Bonavida B., Chandra J., Chauhan D., Cusack J. C. Jr, Fenical W., Ghobrial I. M., Groll M., Jensen P. R., Lam K. S., Lloyd G. K., McBride W., McConkey D. J., Miller C. P., Neuteboom S. T., Oki Y., Ovaa H., Pajonk F., Richardson P. G., Roccaro A. M., Sloss C. M., Spear M. A., Valashi E., Younes A., Palladino M. A.
Marizomib, a Proteasome Inhibitor for All Seasons: Preclinical Profile and a Framework for Clinical Trials
Current Cancer Drug Targets, 2011,11, 254-84, PDF

[70] Gräwert M. A., Gallastegui N., Stein M. L., Schmidt B., Kloetzel P.-M., Huber R., Groll M.
Elucidation of α-Keto-Aldehyde Binding Mechanism Reveals a Novel Lead Structure Motif for Proteasome Inhibition
Angew. Chem. Int. Ed., 2011, 50, 542-4 , PDF

[69] Clerc J., Li N., Krahn D., Groll M., Bachmann A. S., Florea B. I., Overkleeft H. S., Kaiser M.
The natural product hybrid of Syringolin A and Glidobactin A synergizes proteasome inhibition potency with subsite selectivity
Chem. Commun., 2011, 47, 385-7, PDF

2010

[68] Lee M., Gräwert T., Quitterer F., Rohdich F., Eppinger J., Eisenreich W., Bacher A., Groll M. 
Biosynthesis of isoprenoids: crystal structure of the [4Fe-4S] cluster protein IspG
J. Mol. Biol., 2010, 404, 600-10, PDF

[67] Alte F., Stengel A., Philipp Benz J. P., Petersen E., Soll J., Groll M., Bölter B.
Ferredoxin:NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH-dependent manner
Proc. Natl. Acad. Sci. USA, 2010, 107, 19260-5, PDF

[66] Gräwert T., Span I., Bacher A., Groll M.
Reductive dehydroxylation of allyl alcohols by IspH protein
Angew. Chem. Int. Ed. Engl., 2010, 49, 8802-9, PDF

[65] Clerc J., Schellenberg B., Groll M., Bachmann A. S., Huber R., Dudler R., Kaiser M.
Convergent Synthesis and Biological Evaluation of Syringolin A and Derivatives as Eukaryotic 20S Proteasome Inhibitors
Eur. J. Org. Chem., 2010, 21, 3991-4003, PDF

[64] Behrendt C. T., Kunfermann A., Illarionova V., Matheeussen A., Gräwert T., Groll M., Rohdich F., Bacher A., Eisenreich W., Fischer M., Maes L., Kurz T. 
Synthesis and antiplasmodial activity of highly active reverse analogues of the antimalarial drug candidate fosmidomycin
ChemMedChem, 2010, 5, 1673-6, PDF

[63] Groll M., Gallastegui N., Maréchal X., Le Ravalec V., Basse N., Richy N., Genin E., Huber R., Moroder L., Vidal J., Reboud-Ravaux M.
20S proteasome inhibition: designing noncovalent linear peptide mimics of the natural product TMC-95A
ChemMedChem, 2010, 5,1701-5, PDF

[62] Gallastegui N., Groll M.
The 26S proteasome: assembly and function of a destructive machine
Trends Biochem. Sci., 2010, 35, 634-42, PDF

[61] Geist J. G., Lauw S., Illarionova V., Illarionov B., Fischer M., Gräwert T., Rohdich F., Eisenreich W., Kaiser J., Groll M., Scheurer C., Wittlin S., Alonso-Gómez J. L., Schweizer W. B., Bacher A., Diederich F.
Thiazolopyrimidine inhibitors of 2-methylerythritol 2,4-cyclodiphosphate synthase (IspF) from Mycobacterium tuberculosis and Plasmodium falciparum
ChemMedChem, 2010, 5, 1092-101, PDF

[60] Gräwert T., Span I., Eisenreich W., Rohdich F., Eppinger J., Bacher A., Groll M.
Probing the reaction mechanism of IspH protein by x-ray structure analysis
Proc. Natl. Acad. Sci. USA, 2010, 107, 1077-81, PDF

2009

[59] Gallastegui N., Groll M.
How ATPases unravel a mystery
Structure, 2009, 17, 1279-81, PDF

[58] Clerc J., Florea B. I., Kraus M., Groll M., Huber R., Bachmann A. S., Dudler R., Driessen,C., Overkleeft H. S., Kaiser M.
Syringolin A selectively labels the 20S proteasome in murine EL4 and wildtype and bortezomib adapted leukemic cells lines
ChemBioChem., 2009, 10, 2638-43, PDF

[57] Groll M., McArthur K. A., Macherla V. R., Manam R. R., Potts B. C. 
Snapshots of the Fluorosalinosporamide/20S Complex Offer Mechanistic Insights for Fine Tuning Proteasome Inhibition
J. Med. Chem., 2009, 10, 5420-8, PDF

[56] Gräwert T., Rohdich F., Span I., Bacher A., Eisenreich W., Eppinger J., Groll M
Structure of active IspH enzyme provides mechanistic insights into substrate reduction
Angew. Chem. Int. Ed., 2009, 48, 5756-9, PDF

[55] Clerc J., Groll M., Illich D. J., Bachmann A. S., Huber R., Schellenberg B., Dudler R., Kaiser M.
Synthetic and structural studies on the syrbactin natural products reveal critical determinants of their selectivity and potency of proteasome inhibition
Proc. Natl. Acad. Sci. USA, 2009, 106, 6507-12, PDF

[54] Groll M., Huber R., Moroder L.
The persisting challenge of selective and specific proteasome inhibition
J. Pept. Sci., 2009, 15 , 58-66, PDF

[53] Sollner S., Schober M., Wagner A., Prem A., Lorkova L., Palfey B. A., Groll M., Macheroux P.
Quinone reductase acts as a redox switch of the 20S yeast proteasome
EMBO Rep., 2009, 10, 65-70, PDF

2008

[52] Manam R. R., McArthur K. A., Chao T. H., Weiss J., Ali J. A., Palombella V. J., Groll M., Lloyd G. K., Palladino M. A., Neuteboom S. T., Macherla V. R., Potts B. C.
Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides
J. Med. Chem., 2008, 51, 6711-24, PDF

[51] Groll M., Balskus E. P., Jacobsen E. N.
Structural analysis of spiro beta-lactone proteasome inhibitors
J. Am. Chem. Soc., 2008, 130, 14981-3, PDF

[50] Schreiner P., Chen X., Husnjak K., Randles L., Zhang N., Elsasser S., Finley D., Dikic I., Walters K., Groll M.
Ubiquitin docking at the proteasome via a novel PH domain interaction
Nature, 2008, 453, 548-52, PDF

[49] Hines J., Groll M., Fahnestock M., Crews C. M. 
Proteasome Inhibition by Fellutamide B Induces Nerve Growth Factor Synthesis
Chem. & Biol., 2008, 15, 501-12, PDF

[48] Groll M., Schellenberg B., Bachmann A. S., Archer C. R., Huber R., Powell T. K., Lindow S., Kaiser M., Dudler R. 
A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism
Nature, 2008, 452, 755-8, PDF

2007

[47] Borissenko L., Groll M. 
Diversity of proteasomal missions: fine tuning of the immune response
Biol. Chem., 2007, 388, 947-55, PDF

[46] Horwitz A., Navon A., Groll M., Smith D. M., Reis C., Goldberg A. L.
ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in archaea
J. Biol. Chem., 2007, 282, 22921-9, PDF

[45] Borissenko L., Groll M.
20S proteasome and its inhibitors: crystallographic knowledge for drug development
Chemical Reviews, 2007, 107, 687-717, PDF

[44] Bredemeier R., Schlegel T., Ertel F., Vojta A., Borissenko L., Bohnsack M. T., Groll M., von Haeseler A., Schleiff E.
Functional and phylogenetic properties of the pore forming beta-barrel transporters of the Omp85 family
J. Biol. Chem., 2007, 282, 1882-90, PDF

2006

[43] Mokranjac D., Bourenkov G., Hell K., Neupert W., Groll M.
Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor
EMBO J., 2006, 25, 4675-85, PDF

[42] Groll M., Larionov O. V., Huber R., deMeijere A.
Inhibitor-binding mode of homobelactosin C to proteasomes: new insights into class I MHC ligand generation
Proc. Natl. Acad. Sci. USA, 2006, 103, 4576-79, PDF

[41] Groll M., Berkers C. R., Ploegh H. L., Ovaa H.
Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome
Structure, 2006, 14, 451-6, PDF

[40] Groll M., Huber R., Potts B. 
Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding
J. Am. Chem. Soc., 2006, 128, 5136-41, PDF

[39] Groll M., Götz M., Kaiser M., Weyher E., Moroder L.
TMC-95 based inhibitor design provides evidence for the catalytic versatility of the proteasome
Chem. & Biol., 2006, 13, 607-14, PDF

2005

[38] Groll M., Huber R.
Purification, crystallization and X-ray analysis of the yeast 20S proteasomes
Methods Enzymol., 2005, 398, 329-36, PDF

[37] Goettig P., Brandstetter H., Groll M., Göhring W., Konarev P., Svergun D. I., Huber R., Kim J.
X-ray snapshots of peptide processing in mutants of tricorn interacting factor F1 from T. acidophilum
J. Biol. Chem., 2005, 280, 33387-96, PDF

[36] Locher M., Lehnert B., Krauss K., Heesemann J., Groll M., Wilharm G. 
Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycT
J. Biol. Chem., 2005, 280, 31149-55, PDF

[35] Braun H., Umbreen S., Groll M., Kuckelkorn U., Wiegand E., Drung I., Kloetzel P.-M., Schmidt B. 
Tripeptide mimetics inhibit the 20S proteasome by covalent bonding to the active threonines
J. Biol. Chem., 2005, 280, 28394-401, PDF

[34] Groll M., Bochtler M., Brandstetter H., Clausen T., Huber R.
Molecular machines for protein degradation
ChemBioChem., 2005, 6, 222-256, PDF

[33] Borissenko L., Groll M.
Crystal structure of TET protease reveals complementary protein degradation. pathways in prokaryotes
J. Mol. Biol., 2005, 346, 1207-19, PDF

2004

[32] Groll M., Huber R. 
Inhibitors of the eukaryotic 20S proteasome core particle
Biochim. Biophys. Acta, 2004, 1695, 33-44, PDF

[31] Ye J., Osborne A., Groll M., Rapoport T.
RecA-like Motor ATPases - lessons from structures
Biochim. Biophys. Acta, 2004, 1659, 1-18, PDF

[30] Kaiser M., Groll M., Siciliano C., Assfalg-Machleidt I., Weyher E., Kohno J., Milbradt A., Renner C., Huber R., Moroder L. 
Inhibition of eukaryotic 20S proteasome by TMC-95A analogues: factorising structural determinants
ChemBioChem., 2004, 5, 1256-66, PDF

[29] Neumayer W., Groll M., Lehmann V., Antoneka U., Kahler S., Heesemann J., Wilharm G. 
Yersinia enterocolitica type III secretion chaperone SycH. Recombinant expression, purification, characterisation, and crystallisation
Protein Expr Purif., 2004, 35, 237-47, PDF

[28] Kaiser M., Milbradt A. G., Siciliano C., Machleidt I., Machleidt W., Groll M., Renner C., Moroder L.
TMC-95A Analogues with Endocyclic Biphenyl Ether Group as Proteasome Inhibitors
Chemistry & Biodiversity, 2004, 1, 161-73, PDF

2003

[27] Groll M., Clausen T. 
Molecular shredders: How proteasomes fulfill their job
Curr. Opin. Struc Biol., 2003, 13, 665-73, PDF

[26] Kaiser M., Siciliano C., Assfalg-Machleidt I., Groll M., Milbradt A. G., Moroder L.
Synthesis of a TMC-95A Ketomethylene Analogue by Cyclization via Intramolecular Suzuki Coupling
Org Lett., 2003, 185, 3435-7, PDF

[25] Groll M., Huber R.
Substrate access and processing by the 20S proteasome core particle
Internat. J. Biochem. & Cell Biol., 2003, 5, 606-16, PDF

[24] Groll M., Brandstetter H., Bartunik H. D., Bourenkow G., Huber R.
Investigations on the maturation and regulation of archaebacterial proteasomes
J. Mol. Biol., 2003, 327, 75-83, PDF

2002

[23] Kim J. S., Groll M., Musiol H. J., Behrendt R., Kaiser M., Moroder L., Huber R., Brandstetter H. 
Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum
J. Mol. Biol., 2002, 324, 1041-50, PDF

[22] Brandstetter H., Kim J. S., Groll M., Göttig P., Huber R. 
Structural basis for the processive protein degradation by tricorn protease
Biol. Chem., 2002, 383, 1157-65, PDF

[21] Göttig P., Groll M., Kim J. S., Brandstetter H. 
Structures of the tricorn-interacting aminopeptidase F1 with different ligands explain its mechanism
EMBO J., 2002, 21, 5343-52, PDF

[20] Groll M., Nazif T., Huber R., Bogyo M. 
Probing structural determinants distal to the site of hydrolysis that control substrate specificity of the 20S proteasome
Chem. & Biol., 2002, 9, 655-62, PDF

[19] Kaiser M., Groll M., Renner C., Huber R., Moroder L.
The core structure of TMC-95A is a promising lead for reversible proteasome inhibition
Angew. Chem. Int. Ed., 2002, 41 (5), 780-3, PDF

2001

[18] Brandstetter H., Kim J. S., Groll M., Huber R.
Crystal structure of the tricorn protease reveals a protein disassembly line
Nature, 2001, 414, 466-70, PDF

[17] Groll M., Koguchi Y., Huber R., Kohno J.
Crystal structure of the 20S proteasome:TMC-95A complex: A non-covalent proteasome inhibitor
J. Mol. Biol., 2001, 311, 543-8, PDF

[16] Kohler A., Bajorek M., Groll M., Moroder L., Rubin D. M., Huber R., Glickman M., Finley D.
The substrate translocation channel of the proteasome
Biochimie., 2001, 83, 325-32, PDF

2000

[15] Groll M., Bajorek M., Kohler A., Moroder L., Rubin D. M., Huber R., Glickman M., Finley D.
A gated channel into the proteasome core particle
Nature Struct. Biol., 2000, 7, 1062-7, PDF

[14] Loidl G., Musiol H. J., Groll M., Huber R., Moroder L.
Synthesis of bivalent inhibitors of eucaryotic proteasomes
J. Pept. Sci., 2000, 6, 36-46, PDF

[13] Groll M., Kim K. B., Kairies N., Huber R., Crews C. M.
Crystal structure of epoxomicin:20S proteasome reveals molecular basis for selectivity of α'β'-epoxyketone proteasome inhibitors
J. Am. Chem. Soc., 2000, 122, 1237-8, PDF

1999

[12] Schmidtke G., Holzhütter H., Bogyo M., Kairies N., Groll M., Emch R., Groettrup M.
How an inhibitor of the HIV-I protease modulates proteasome activity
J. Biol. Chem., 1999, 274, 35734-40, PDF

[11] Bochtler M., Ditzel L., Groll M., Hartmann C., Huber R.
The proteasome
Annu. Rev. Biophys.& Biomol. Struct., 1999, 28, 295-306, PDF

[10] Groll M., Heinemeyer W., Jäger S., Ullrich T, Bochtler M., Wolf D. H., Huber R.
The catalytic sites of 20S proteasomes and their role in subunit maturation: A mutational and crystallographic study
Proc. Natl. Acad. Sci. USA, 1999, 96, 10976-83, PDF

[9] Loidl G., Groll M., Musiol H. J., Ditzel L., Huber R., Moroder L.
Bifunctional inhibitors of the trypsin-like activity of eukaryotic proteasomes
Chem. & Biol., 1999, 6, 197-204, PDF

[8] Jäger S., Groll M., Huber R., Wolf D. H., Heinemeyer W.
Proteasome beta-type subunits: Unequal roles of propeptides in core particle maturation and a hierarchy of active site function
J. Mol. Biol., 1999, 29, 997-1013, PDF

[7] Loidl G., Groll M., Musiol H. J., Huber R., Moroder L.
Bivalency as a principle for proteasome inhibition
Proc. Natl. Acad. Sci. USA, 1999, 96, 5418-22, PDF

1998

[6] Nussbaum A. K., Dick T. P., Keilholz W., Schirle M., Stevanovic S., Dietz K., Heinemeyer W., Groll M., Wolf D. H., Huber R., Rammensee H. G., Schild H.-J.
Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase I
Proc. Natl. Acad. Sci. USA, 1998, 95, 12504-9, PDF

[5] Dick T. P., Nussbaum A. K., Deeg M., Heinemeyer W., Groll M., Schirle M., Keilholz W., Stevanovic S., Wolf D. H., Huber R., Rammensee H. G., Schild H.-J.
Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants
J. Biol. Chem., 1998, 273, 25637-46, PDF

[4] Ditzel L., Huber R., Mann K., Heinemeyer W., Wolf D. H., Groll M.
Conformational constraints for protein self-cleavage in the proteasome
J. Mol. Biol., 1998, 279, 1187-91, PDF

1997

[3] Escherich A., Ditzel L., Musiol H. J., Groll M., Huber R., Moroder L. 
Synthesis, kinetic characterization and X-ray analysis of peptide aldehydes as inhibitors of the 20S proteasome from Thermoplasma acidophilum and Saccharomyces cerevisiae
Biol. Chem., 1997, 378, 893-8, PDF

[2] Bochtler M., Ditzel L., Groll M., Huber R. 
Crystal structure of heat shock locus V (HslV) from Escherichia coli
Proc. Natl. Acad. Sci. USA, 1997, 94, 6070-4, PDF

[1] Groll M., Ditzel L., Löwe J., Stock D., Bochtler M., Bartunik H.D., Huber R.
Structure of the 20S proteasome from yeast at 2.4 Å resolution
Nature, 1997, 386, 463-71, PDF

 

Book chapters 

[12] Huber E. M., Groll M., Ortlund E. (2023)
Meet the authors: Dr. Eva Huber, Dr. Michael Groll, and Dr. Eric Ortlund
Structure, 31, 762-3, PDF

[11] Huber E. M., Groll M. (2013)
Proteasominhibitoren – von der Grundlagenforschung in die Klinik
BIOspektrum, 19, 730-732, PDF

[10] Gräwert M. A., Groll M. (2013)
Eukaryotic 20S Proteasome
In: Handbook of Proteolytic Enzymes (Rawlings N. D. and Salvesen G. S., Eds),
Oxford: Academic Press, 3684–91, PDF

[9] Gräwert M. A., Groll M. (2013)
PhTET2 Aminopeptidase
In: Handbook of Proteolytic Enzymes (Rawlings N. D. and Salvesen G. S., Eds),
Oxford: Academic Press, 1645–50, PDF

[8] Huber E. M., Groll M., (2012)
Kristallstruktur eines molekularen Schredders
GIT Labor-Fachzeitschrift
Wiley-VCH, Weinheim, 363-5, PDF

[7] Groll M., Bochtler M., Brandstetter H., Clausen T., Huber R. (2005)
Molecular machines for protein degradation
In: Functional Nanomaterials (Geckeler K. E. and Rosenberg E., Eds.)
American Scientific Publishers, Stevenson Ranch, California, 1-34

[6] Groll M. (2004)
Habilitation thesis: Structural and functional similarities and differences of archaebacterial and eukaryotic 20S proteasomes
Charité Medical School of the Humboldt-University of Berlin, PDF

[5] Groll M., Huber R. (2004)
Structures of the yeast proteasome core particle in complex with inhibitors
In: Proteasome Inhibitors in Cancer Therapy (Adams J., Ed.)
Humana Press Inc., Totowa, New York, 39-47

[4] Groll M., Coux O. (2002)
Proteasomes
In: Proteinase and Peptidase Inhibition:
Recent potential targets for drug development (Smith, H. J. and Simons, C., Eds.)
Taylor & Francis, London, New York, 62-83

[3] Bochtler M., Ditzel L., Stock D., Löwe J., Hartmann C., Dorowski A., Huber R., Groll M. (2001)
Proteasome crystal structures
In: Proteasomes: The world of regulatory proteolysis (Hilt W. and Wolf D. H., Eds.)
RG Landes Bioscience, Georgetown, Texas, Chapter 3

[2] Groll M. (1998)
Ph.D. thesis: Crystallographic and Biochemical Characterisation of the 20S Proteasome from S. cerevisiae
Faculty of Chemistry, Biology and Earth Science of the TUM, PDF

[1] Groll M. (1995)
Diploma thesis: Isolierung und Kristallisation des 20S-Proteasoms aus Saccharomyces cerevisiae
Faculty of Chemistry, Biology and Earth Science of the TUM, PDF