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Chapter 1

Manual for the Development of
Knowledge-Based Scoring Functions

The @-Scoring tool kit offers scripts for the parametrization of knowledge-based scor-
ing functions, the fast re-scoring of decoys and for their assessments. Scoring func-
tions can be generated for any type of decoys or any problem by trying out different
parametrization methods, several structural representations and various potential
forms.
To generate a scoring function out of the combination of these possibilities, a bench-
mark has to be set up which contains a sufficient number of complexes for the training
and the assessment afterwards. Knowledge-based scoring functions are able to im-
prove the overall performance of docking protocols when sampling and scoring are
aligned [4]. Hence, it is recommended to generate the decoy set by using the same
sampling algorithm as it will be used in the docking protocol.
To gain an optimal scoring performance, the right structural representation has to
be considered. It defines the number of atom or bead types the potential should
consist of. To make fast training and a fast re-scoring possible it is necessary to
generate binary pre-grids for the desired potential form. First, these grids are used
to generate a parameter set by direct Monte-Carlo Annealing or linear Regression.
Finally, the obtained parameters serve to re-score the decoy-sets of each complex to
evaluate the performance of the generated knowledge-based scoring function.
This manual leads the user step by step through all levels to obtain a sufficient
scoring function and explains the necessary commands to run the scripts of the @-
Scoring tool kit. The shell-script ’example.sh’ can be found attached to illustrate the
general procedure. Furthermore, the Attract_benchmark can found attached which
was used to create scoring functions in the paper. The benchmark consists out
of 166 protein-protein complexes and contains decoy sets from Attract’s rigid-body
sampling with unbound conformations. In general, it might be useful to consider the
use of a cluster for the creation of the pre-grids and certain re-scoring since these
steps have to be performed for each decoy of each complex.
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Chapter 1 Manual for the Development of Knowledge-Based Scoring Functions

1.1 Set up Benchmark

To set up a benchmark for the training of knowledge-based scoring functions, it is
necessary to create a folder for each complex containing a set of decoys from the
targeted sampling or refinement algorithm. Furthermore, files which determine the
quality of the conformations have to be present for an optimization of the parameters.
These assessments are generated by the comparison of the native complex to the
generated decoys by their fnat, Irmsd, Lrmsd, the Capri stars or other assessment
values.

Attract

For the Attract docking engine and iAttract refinement, the unbound and bound 3D
structures of the constituents and the output-file from the sampling must be in the
folder for each complex. Attract generates an output-file which contains the degrees
of freedom of each decoy to align the receptor and ligand at the sampled position
(www.attract.ph.tum.de). Since the tool kit was created for scoring functions of
Attract’s sampling and refinement, ensembles, normal modes and solutions from
iAttract can used as in Attract itself.

Rigid-body decoys

Rigid-body solutions from other docking protocols, such as HADDOCK
(http://haddock.chem.uu.nl), can be transformed into the Attract output format by
the tool haddock2attract.py from the Attract program collection.

Flexible docking or refinement

Unfortunately, solutions in the pdf-format from other flexible docking protocols have
to be divided into their constituents and separately reduced into the favoured struc-
tural representation. This is implemented in pdb_split.sh using splitpdb.py and
is very time demanding. The name of the pdb which contained all decoys can be
submitted afterwards to generate the pre-grids for the parametrization.

Defining complexes for the training set

The benchmark must be divided into a training and a test set. For that reason, a
simple text file with a list of all complexes which are supposed to be in the training
set has to be prepared.
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1.2 Generation of feature vectors

1.1.1 cross-distribution.py

cross-distribution.py is a simple program to permute the list of training com-
plexes n times to perform crossvalidation. The last n’th part of the list serves as the
validation set in a training procedure.
To use cross-distribution.py the list of the complexes has to be named by the
argument --complexes, the number of permutations by --numtestset and the name
of the output file by --output. If --complexes is not given, it takes the names of all
the folders in the executive directory by default to prepare the crossvalidation files.
As output it generates n files supplemented by ’-cv’ and numbered from 1 to n.

$python cross-distribution.py

--complexes trainset.txt

--numtestset n

--output outname

--exceptions 2 1ACB 1EWY

By the use of --exceptions the number and names of complexes which should be
excluded from the training sets can be given.

1.1.2 capristars.py

The Capri stars evaluate the quality of the generated decoys after the assessment
table in Wodak et al. 2007 [2] and thus they may be used as outcomes for the linear
regression method or as quality weights in the Monte Carlo Annealing algorithm.
The program capristars.py generates a file which contains the assigned stars from
the files of the lrmsd, irmsd and the fnat. The output-file possess the name of the
file from the ligand rmsd and ends on .capstars.

$python capristars.py file.lrmsd file.irmsd file.fnat

1.2 Generation of feature vectors

1.2.1 redatom.py

To generate a pdb-file containing the atomistic coordinates and assigning atom types
from OPLS [1], the tool aareduce.py from the ATTRACT directory has to be used.
To generate a coarse-grained model in Attract’s representation out of it, reduce.py
is used afterwards.
Additionally, the @-scoring tool kit offers the possibility to assign atomistic repres-
entations to the structures from Tobi et al. [3] and the new developed atomistic
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grouped all atom (GAA) model.
Therefore, redatom.py uses a file for the specific atom types by --atomtypefile
atomtypes_model.dat. With the argument --output one sets the name of the out-
put pdb file and with --pdb one assigns the pdb-file which has to be converted to the
chosen model. By using the command --addNH one can insert the hydrogen atoms of
the backbone nitrogens. Furthermore, it is possible to define by --atomtypesonly
that only the atom types of the representation will be changed but their charges
won’t be adopted from the file with the atom types.

1.2.2 collect-function.py

To train the parameters of the scoring functions and to rescore all the decoy sets
quickly, it is necessary to precalculate feature vectors based on the form of the scoring
function. The program collect-function.py is a python program using a Fortran
written library which is implemented into python with f2py. Furthermore, it uses
collectlibpy.py in combination with collectlib.so from the Attract program to
generate the coordinates of the decoy poses from the Attract output-file on the run.
To use collect-function.py the library collectgridlib.f has to be compiled with
f2py and deposited in the same directory as the program collect-function.py. The
library is compiled with f2py by:

$f2py -c -m collectgridlib collectgridlib.f

In addition, a soft link to collectlibpy.py and collectlib.so from the /bin folder
in Attract has to be established.
The program itself can be executed on the terminal by providing it with the
output.dat file from ATTRACT with the degrees of freedom for each decoy pose or
with the name of the pdb-file containing all decoys. Furthermore, with the argument
--proteinmodel structures of the ligand and the receptor are inserted as pdb’s. By
default the program generates binary grids for the feature vectors in single precision.
It is executed by:

$python collect-funtion.py output.dat/decoys.pdb

--proteinmodel

1. representation.reduce

2. receptor.pdb

3. ligand.pdb

--gridtype [spline, none, distances]

The entry behind --proteinmodel has to be the position of a file that contains the
number of atom-types as its header (# natom) and any replacement of atom-type
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1.2 Generation of feature vectors

numbers in the following, for instance to replace atom-type 88 with 16 (88 16)(See
also example files opls.reduce etc.). The reduction is necessary in order to use only
uprising numbers as atom types without interruptions to save memory space and
computational time.
The output grid contains feature vectors for each decoy in the coordin-
ates file and will be in shape (bins, numstructures, numparameter).
The number of parameters numparameter is derived for contact grids by
numparameter=atomtypes*(atomtypes-1)/2+atomtypes. Grids with double preci-
sion can be generated by the use of --double.
By inserting --maxstruc n_maxstruc(default 100.000) the number of maximum
decoy poses for a grid can be defined. This might be relevant if grids become too
large for the internal memory of the machine. The --gridtype can be spline for
grids which are used for the generation of any potential form by interpolation, none
for grids which count the number of contacts in given ranges or distances for grids
which sums up all distances to a given power for all atoms of each contact type.
The argument --polationparams defines more precisely the content of the grid for
each gridtype.

--polationparams

if spline:

1. k_degreee(default=4)

2. stepsize(default=0.35)

3. start(default=1.4)

4. end(default=7.)

if none or distances:

1. stepsize(default=1.)

2. start(default=2.)

3. end(default=10.)

For the step potentials (none), --polationparams defines grids which contain a
number of equal steps which can be summed up in the training script afterwards to
generate various ranges of the step potential. The stepsize, the start and the end
characterize the ranges of the generated regular steps in the vectors.
However, for the step potentials it might be more convenient to define the steps
directly and not to precalculate a grid which can serve for the generation of a final
step grid. For this purpose, the argument --bins can be used to define the step
lengths of the grids by giving first the number of steps and then their distances from
the center.
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--bins n_bins rcut0 · · · rcutn

For random potential forms like the saddle point potentials (spline) the parameters
stepsize, start and end define the placement of the nodes between which will be in-
terpolated in the training. The argument k_degree determines the number of nodes
considered for an interpolation and thus the degree of the interpolation. Hence, a
degree of 2 stands for a linear interpolation, 3 for a quadratic and so on.
To find an appropriate degree for ones interpolation, the parameter of Attract can
be inserted by --attractpar to print out the interpolated values for each structure
and to compare them to the original values.
For the distances grids, which can be used for the training of normal LJ-like poten-
tials, one can divide the feature vectors into different steps of size stepsize, starting
at start and ending at end in order to sum them up later in the training program
for a training at different cutoffs. Furthermore, the distances grids safe the sum
of the distances between two atom types for each power separately to use different
combinations of repulsive and attractive powers afterwards. Hence, the number of
powers n_power and the powers themselves to which the sums are stored has to be
given by the argument --powers. The final distances grid possess a shape of the
form (bins, n_power, numstructures, numparameter):

--powers n_powers p0 · · · pn

1.2.3 asa.py

The program asa.py computes solvent accessible surface areas, the total buried
surface area and buried surface areas for defined atom types by the rolling probe
algorithm. The total buried surface area can also be seen as a score, whereas the
bsA for the atom types can further be used as features for a scoring function. As
well as collect-function.py the script is dependent on two libraries which have to be
present or soft-linked into the same directory as the main program. Softlinks for the
files colleclibpy.py and colleclib.so have to be set from the Attract directory.
The Fortran library asalib.f has to be compiled with f2py for its use in the python
program. The program can be executed easily in the terminal by giving it 4 to 5
arguments:

$python asa.py

1. receptor.pdb

2. ligand.pdb

3. output.dat/decoys.pdb

4. [atomistic, buriedsa, asa]

if atomistic:
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1.3 Training Parameters

5. [chemical, file.reduce]

The fourth parameter defines the data which will be generated. The buriedsa and
asa print out the buried surface area and the solvent accessible area of the complex
respectively. The parameter atomistic generates feature vectors of the bsA for the
chosen atom types. For the chemical atom types it only respects their chemical sym-
bol H, O, C, N, S on the interface. Any other representation creates grids of atomistic
bsA’s with a grid shape in the form (N_structures, n_atomtypes). To reduce the
vector size, unused atom type numbers should be filled by downgrading high atom
types with the file.reduce. This file contains the total number of atom types (#
natom) in the first line and all atom types which have to be renumbered below (f.e.
99 32, to substitute atom type 99 with 32, see also opls.reduce, attract.reduce etc.).
For the usage of pseudo atoms in the attract description, the size for the
van der Waals radii of the pseudo atoms can be adjusted with the argument
--coarse_grained. The coarse grained van der Waals radii were defined by
Zacharias 2003 [5].
Furthermore, it is possible to change the size of the rolling probe in the algorithm
with the argument --watersize r_probe(default=1.4).

1.2.4 decoysetmixer.py

It might be necessary for a good result to enrich the training set with near-native
structures which were scored badly by the Attract-score or to supplement structures
which were generated by another sampling method. This can whether be done by
resorting and supplementing the ATTRACT output file containing the degrees of
freedom or by using decoysetmixer.py to resort and supplement grids of the same
form.

1.3 Training Parameters

1.3.1 training-MC.py

The program training-MC.py uses Monte Carlo Annealing to predict a parameter
set for scoring functions for various potential forms. It uses precalculated grids which
contain features for each parameter and structure of each complex. To optimize para-
meters, it is possible to define a parameter set as starting position or to start the
algorithm from a random distribution. The program uses the subroutine fgenlib.py
for the computation of function values at the nodes which are defined for the inter-
polation algorithm. Furthermore, it uses duplicatelib.py to duplicate structures
in the decoy sets after a given probability (f.e. to be a *-structure after refinement),
so that 10% of the training structures for each complex have a probability except
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from 0. Both libraries have to be in the same directory as the main program for its
execution by:

$python training-MC.py

--complexes [ ]

--grid [ ]

--mcparams [ ]

--evaluate [ ]

--preparameter [ ]

--output [ ]

Due to the variety of the potential types which can be handled by training-MC.py,
the number and type of parameters which have to be given for each argument can
vary. Below it is described which parameter have to be given for the arguments
above.

--complexes

• list_of_trainset.txt

• n_crossvalidation

By --complexes a data-file containing the list of all the protein complexes for train-
ing purposes is provided. The folders in this list must contain the precalculated grids
and the qualitative evaluations (irmsd, fnat, ...) which are used by training-MC.py.
Secondly, the number n_crossvalidation for leave one out crossvalidation has to
be defined. The program trains the parameter on the fraction of the first (n− 1)/n
complexes of the given training benchmark, and validates the results on the last 1/n
complexes in the list.

--grid

• precalc-grid.npy

• n_structures

• [’interpolate’, ’distances’, ’step’]

if ’interpolate’

◦ start_nodes

◦ end_nodes

◦ stepsize_nodes

if ’distances’
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1.3 Training Parameters

◦ r_cut_off

◦ number_bins_power

◦ list_of_bins[. . .]

By the argument --grid, first the name of the precalculated training grids is given
and secondly the number of structures which will be taken from it. Thirdly, the
grid type has to be defined, which can be ’interpolate’, ’distances’ or ’step’.
For ’step’ potentials no further parameters have to be defined. The grid type
’interpolate’ is for grids which contain the sum of Lagrange functions on the
nodes for an interpolation of saddle point functions. For this type, one has to define
the position of the first node, the position of the last and the stepsize between them.
The parameter ’distances’ is used for grids which contain the sum over 1/rz for
different powers of z. Due to the fact that these sums can be calculated in different
ranges, r_cut_off defines the number of range-bins which will be summed up for a
total distance cutoff. Thereby, any integer cut off can be generated by summing up
the contents for example in the ranges between 0 to 7Å. Secondly, the number of bins
with sums to different powers is given. That is usually 2 for a normal LJ-potential
but also potentials which use further terms can be created by MC annealing. For a
LJ-potential form, a grid which contains the sum over 1/r12 in the fist bin and over
1/r6 in the fourth, the argument looks as follows.

--grid · · · r_cut 2 1 4

--mcparams

• ∆p_type(’normal’, ’adaptive’)

• ∆p_size

• MC_steps

• targetfunction(’rank’, ’refine’, ’positiontop’, ’simple’,
’positionlinear’, ’positionquadratic’, ’refine-positionlinear’)

if ’rank’, ’refine’, ’positiontop’, ’refine-positionlinear’

◦ number_subset

• Annealing_function(’exponential’, ’log’, ’linear’, ’ziczac’)

• start_temperature

• mc_type(’interpolate’, ’normal’, ’keepsign’)

if ’interpolate’

◦ functiontype

◦ power1
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◦ power2

if ’normal’, ’keepsign’

◦ parameter_change(’normal’, ’saddle’)

if ’saddle’

◦ power1

◦ power2

The parameters provided with --mcparams determine the way the direct Monte Carlo
search is executed. The type of parameter change ∆p_type can be ’normal’ or
’adaptive’. ’normal’ changes a scoring parameter at each step by a given size
∆p_size whereas the ’adaptive’ scheme adapts the stepsize ∆p_size to the tem-
perature by the factor t/T0. MC_steps determines the number of Monte Carlo steps,
that is equivalent to the number of parameter changes and rescorings.
The targetfunction determines the criteria for the optimization of the scoring
functions parameters. The ’rank’ and the ’refine’ function builds the sum over
number_subset structures on top for each complex but the ’rank’ function gives
these an extra linear weight which decreases from rank 1 to number_subset.
The ’simple’ function takes the rank of the the best scoring near-native structure
as its value for the targetfunction.
For ’positoinlinear’ and ’positionquadratic’ each position receives a weight
ωpos which decreases linearly and quadratic respectively. The ’positiontop’ func-
tion assigns also increasing linear weights to each position but just until the structure
reaches the number_subset position. From that rank to the top, the same weight
is assigned. The target function refine-positionlinear multiplies the value from
the target function refine with the value from ’positoinlinear’.
In these cases, the near-native structures possess a weight ωquality dependent on their
quality whereas this weight is 0 for the incorrect structures. These weights are given
by the values of the quality assessment. Furthermore, these values are normalized
by the sum over them to avoid overfitting on complexes with a lot of near-native
structures. The average over all complexes for the sum over the product between
these weights is taken as target function which has to be maximized.

τ =

Mcomplexes∑
m

Nstructures∑
n

ωpos(rk(En)) · ω(n)
quality

The Annealing_function defines the way the temperature is cooled down from
the starting temperature start_temperature. The annealing functions can be
whether ’exponential’, ’linear’ or ’log’ which defines a logarithmic decrease.
The ’ziczac’ annealing uses a sinus2 between two linearly decreasing functions to
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1.3 Training Parameters

heat up the temperature several times to enable the search algorithm to overcome
barriers more easily.
The mc_type defines how the scoring parameters will be changed. This is de-
pendent on the given grid or potential form. For ’interpolate’ grids only the
’interpolate’ method works. In the library functionlib.py, three different
functiontypes are predefined. Functiontype ’0’ is the normal ATTRACT poten-
tial with attractive and repulsive terms depending on the given third parameter ivor.
Funtiontypes ’1’ and ’2’ are variations of that ATTRACT potential, increasing the
range of the attractive potentials at the minimum by a constant value and putting a
repulsive term at the end of the potential respectively. For all three potential shapes,
it is important to define power1 for the first term of the LJ-potential and power2 for
the second. For mc_type = ’keepsign’, the scoring parameters are constrained to
be larger than zero. This is important to use for the generation of a LJ-potential by
the distance grids while using the parameters α and β directly. For ’keepsign’ and
’normal’, it has to be defined in which parameter space the changes are performed.
The parameter_change = ’normal’ changes the parameter αAB and βAB but by
choosing ’saddle’, the parameter εAB and σAB got changed. If ’saddle’ is chosen
as parameter space, power1 and power2 need to be defined for the computation of
αAB and βAB out of εAB and σAB.

--evaluate

• evaluation_values.type

• type(’fnat’, ’irmsd’, ’lrmsd’, ’capstars’ ’probabilities’,
’duplication’)

if ’duplication’, ’probabilities’

◦ list_of_probabilities.txt

◦ n_column

With the argument --evaluate the list of values for the qualitative weighting
of the structures ωquality is given. The second argument defines whether these
values are fnat’s, irmsd’s, lrmsd’s, capstars’s or probabilities based on the
quality file. If ’probabilities’ or ’duplication’ is chosen, the name of the
list_of_probabilities.txt must be given. In that file, the first column consists
of evaluation values for which a probability is assigned from the n_column column.
The parameter ’duplication’ uses the probabilities as weights for the structures,
too. Furthermore, it duplicates the structures on their probability to generate at
least 10% of structures for each complex with a probability except from 0.

--preparameter
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• startparameter(’random’, ’saddlepoint’, ’ABC’)

• bins

• number_of_parameter

if ’saddlepoint’, ’ABC’

◦ array_of_parameter.par

By the argument --preparameter the format of the starting parameter
startparameter is defined. Parameter ’random’ generates a random set of
scoring parameters as a starting point for the optimization in the form (bins,
number_of_parameter). bins determines the number of different parameters, that
means for example 3 for ε, σ and ivor. The number_of_parameter defines the
number of scoring parameters for the interaction types between λ atoms types A
and B: nAB = λ(λ−1)

2 + λ. Whereas for a grid with the atomistic buried surface
areas, the number parameters would be nAB = λ.
By the parameters ’saddlepoint’ and ’ABC’, it is possible to read in a set of
scoring parameters from a file. ’saddlepoint’ defines the parameter file to be form
of εAB, σAB and ivorAB and ’ABC’ is used for parameters in the form α and β.

--output

• output_name

• form_of_outputfile(’matrix’, ’linear’)

For the output file it is necessary to define the arrangement of the parameter.
’matrix’ leads to a matrix of the form (bins × λ × λ) and ’linear’ to a form
(bins× number_of_parameter).

In addition to these main arguments, other arguments can be used to improve
the results of the training process. By --maxweight and --cutoffweight the
weights ωquality can be cut off at low values to train only on ’very’ good structures
and for high weights respectively if overtraining might be coming from them.
Furthermore, --insertnatives gives the possibility to insert a grid of one structure
for each complex which is supposed to be the native one.
By --eraseatomtype it is possible to erase all the entries of the grids for the
given atom type due to the possibility of dummy atoms which should not receive
parameters.
By the argument --converge c_steps it is possible exit the Monte Carlo algorithm
before the total number of steps is executed. Therefore, c_steps defines after how
many steps without a change of the target function, the search is stopped.
For the spline and the distances grids it might be necessary to constrain the
range of the scoring parameters to avoid overfitting. For that reason, the argument
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1.3 Training Parameters

--searchrange can be used. As parameters, the lower and the upper boundary for
each bin has to be given in their order.
Finally, the program generates files containing the parameters in the linear order with
the name MC-Parameter-’outname’.par, for the parameters in matrix form, the
output file is named MC-Paramatrix-’outname’.par and for the output in form of
the parameter ε, σ and ivor, the file is called ’MC-Paramatrix-’outname’_parm.par.
Furthermore, a file containing the development of the targetfunction is created with
the name Annealing-’outname’.txt.

1.3.2 training-glm.py

The program training-glm.py offers the possibility to use various generalized linear
models to estimate parameters for a scoring function from linear regression or linear
classifications. Therefore, the feature vectors are fitted to a given set of output val-
ues. The outcomes have to be characteristics of the quality of the structures. Thus,
fnats, irmsds, lrmsds, capstars of fnon-nats can be used as outcome values for the
regression or to classify near-natives for a classification.
To enrich the training set with near-native decoys on a given probability (f.e.
to become 2-star from 1-star) duplicatelib.py is implemented in the program.
Thus, duplicatelib.py has to be present in the same folder as the main program.
training-glm.py can be executed on the terminal by:

$python training-glm.py

--complexes [ ]

--grid [ ]

--regressiontype [ ]

--evaluate [ ]

--functionshape [ ]

--output [ ]

The parameters which have to be defined for the arguments --complexes and
--evaluate are the same as already described for training-MC.py.
Due to the fact that linear regression can only deal with functions which are linear
dependent on its parameters, the import of the grids varies slightly from training-
MC.py.

--grid

• precalc-grid.npy

• n_structures
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• gridtype(’distances’, ’step’)

if ’distances’

◦ sign(keepsign, normal)

◦ r_cut_off

◦ number_bins_power

◦ list_of_bins[. . .]

The first parameter for the argument --grid, represents the name of the precalcu-
lated grids for each complex, followed by the number of decoys which are considered
for the training. Thirdly, the type of the grid is given, which can be whether
distances or step. Grids of the form distances contain the sum over the distances
for each atom type to a defined power and step grids contain the number of contacts
in each defined step.
For the grids distances, it has to be defined which sign is assigned for each bin.
The parameter keepsign assigns a negative value to the second sum in the potential
as in a typical Lennard-Jones potential. Additionally, to generate a Lennard-Jones
potential, the --regressiontype nonneglsq must be used to generate exclusively
positive values for αAB and βAB.
The parameter r_cut_off defines the number of bins which are sumed up to generate
different cutoffs. number_bins_power represents the number of bins which contain
sums over the distances to different powers. After defining the number of terms
which will be used in the potential (for LJ typically 2), the location of precalculated
terms in the grid has to be determined.

The argument --regressiontype defines the linear regression or classification
algorithm which is used to generate the parameter. The various regression methods
perform their optimization on different cost functions based on different underlying
models for the data. The characteristics of the listed models will roughly be ex-
plained in the following.

--regressiontype

(a) Robustlinearmodels

(b) svr-robust

(c) ols

(d) nonneglsq

(e) Ridge

(f) Lasso

14



1.3 Training Parameters

(g) elasticNet

(h) RANSAC

(i) Bayesianridge

(j) logistic

(k) SGDClass

The Robustlinearmodel represents a robust regression based on the statsmodel
library which can be found under http://statsmodels.sourceforge.net. Instead of the
usual assumption of Gaussian noise, the statsmodel library offers the possibility to
use different probability models which can be chosen by:

--regressionparams regmodel(Huber, Andrew, Hampel, Ramsay, TrimmedMean,
Tukey)

The regression with svr-robust represents a support vector regression. Based on
the parameters given by --regressionparams, its robustness can be adjusted.
In general, the results of some linear regression algorithms may be affected towards
unfavoured solutions if outliers exist in the training set. Robust regression methods
intend to be less prone towards outliers due to their adapted cost-functions.
The ols regression represents the ordinary least squares regression which assumes a
Gaussian noise distribution in the data.
Also nonneglsq uses an ordinary least squares fit to generate only positive paramet-
ers. Both methods are based on the SciPy library for python which can be found
under http://www.scipy.org.
The regression and classifier algorithms Ridge, Lasso, elasticNet, RANSAC,
Bayesianridge, logistic, SGDClass are based on the scikit-learn module which
can be found on http://scikit-learn.org.
Ridge and Bayesianridge regression penalize the size of the scoring parameters to
avoid overfitting by including their average value into its cost function.
Lasso regression prefers solutions with fewer parameter values and thus may be able
to recover the exact set of non-zero weights.
Elastic Networks combine the properties of Lasso and Ridge regression in their cost
function and can be used for regression by choosing elastic.
RANSAC is a robust parameter estimator which uses random subsets of inliers for its
predictions. Its result is highly dependent on the number of iterations which can be
defined explicitly with --regressionsparams.
The regression types logistic and SGDClass represent a logistic classifier and
stochastic gradient descent classifier respectively. The input for the y vectors have
to consist of 0’s and 1’s for each class respectively. For the separation into classes
the maximum or minimum value for each class must be given on the second position
behind the --regressiontype.
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In addition, with --regressionparams further parameters can be inserted for each
regression method to optimize their results. An explanation for the argument
--regressionparams must be taken from the source code and the manuals for the
libraries which were mentioned above.

With the argument --functionshape, the bins and the number of atom types
n_atomtypes for the scoring parameters have to be defined. For grids which use the
atomistic buried surface area the number of bins must be defined as 0.

--functionshape

• bins

• n_atomtypes

To define the name and the form of the --output first the name and then the chosen
form has to be given.

--output outname outform(normal, saddle)

The form of the output can whether be normal or saddle. saddle means that the
fitted parameters α and β will be transformed into ε and σ. For the the saddle
form, the power of the first and the second part of the LJ-potential have to be given
for the transformation by --powers p1 p2.
Due to the different size and thus diverse average numbers of contacts or buried
surface areas for each complex, it might be useful to normalize the feature vectors
before using a regression method. With --preprocessing the method to normalize
the input data can be defined. Standard creates a Gaussian distribution of contacts
for each complex separately. MinMax distributes the contacts for each structure
between 0 and 1. Finally, meancomplex divides the contacts through the mean total
number of contacts for each complex.

In addition, further arguments can improve or influence the results of the re-
gressions. For instance --insertnatives provides the possibility to insert a grid of
one structure for each complex which is supposed to be the native structure or by
--eraseatomtype it is possible to erase all the entries of the grid for the given atom
type due to the possibility of dummy atoms.
The output of the program is a file named LinReg-Parameter-’outname’.par
which contains the determined scoring parameters. Furthermore, it is possible to
check the regression results by --prediction. This creates two files which con-
tain the real and the predicted values for the training and the test naming them
LinReg-Predictions_’set’_’outname’.txt.
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1.3.3 training-nonlinear-classfier.py

Classifiers also make their prediction of classes on an underlying function and a
threshold for each class. Using classifiers possesses the advantage that they are
able to separate classes of structures non-linearly on its features. To use classifiers
as a scoring function, the structures for training must be divided into a class of
near-native and incorrect decoys based on a qualitative assessment by fnat, irmsd,
lrmsd or Capri-stars. The program training-nonlinear-classfier.py provides
this possibility. It uses the same arguments as training-glm.py to read in the grids
and to prepare the classification. The program can be executed by:

$python training-nonlinear-classfier.py

--complexes [ ]

--grid [ ]

--classifier [logistic, SVM, SGDclass, gaussianNB]

--evaluate quality.file qualitycut qualitytype

--functionshape [ ]

--output [ ]

Just for the argument --evaluate an extra parameter has to be defined which di-
vides the structures into a near-native and an incorrect class on the values in the
quality.file.
The nonlinear classifiers which can be chosen are logistic, SVM, SGDclass and
gaussianNB. For all four of them, different --fitparams can be defined to obtain
an optimal result. The exact adjustments for the --fitparams must be taken from
the source code. The meaning of the adjustments can be looked up on http://scikit-
learn.org which contains a description of the classifiers.
The output of these methods is a classifier which is stored in a binary file by the
cPickle library named Classpredictor_’classifier-outname.pkl. This file can
be reloaded and used in grid-rescore.py for the rescoring of decoy sets.

1.3.4 average-params.py

After creating n different parameter sets for crossvalidation, a sufficient approach
to prevent overfitting on any set of complexes might be to average the parameter
values. Therefore, average-params.py uses the argument --scores followed by the
number of parameter sets and their names.

$python average-params.py --scores n_scores score1 · · · scoren
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By using the argument --scaleparams, the parameters are normalized by the di-
vision through their standard deviation. Thereby, the parameter sets with larger
scales do not dominate the total average. The standard deviation is calculated for
every type of parameter separately and thus the number of bins has to be provided
with --bins. If bins is set to 0 the parameters are not given in a matrix form but
as a linear vector, for example for the buried surface area potentials or the weights
of scoring combinations. To declare the name of the output the argument --output
can be used.

1.3.5 combine_score.py

The program combine_score.py can combine scores from different scoring functions
linearly and nonlinearly. To determine the weights for the linear combination, it is
possible to use Monte Carlo Annealing but also linear regression or linear support
vector machines. Furthermore, the program includes the possibility to combine
scores nonlinearly by using support vector machines with nonlinear kernels and
naive bayesian estimators.

The generated .rescore files are usually generated in the original order. Therefore,
the program structure_resort.py can be used to sort the rescores of near-native
structures in front of the rescore-file to enrich the training set in the parametrization
process for the combination parameters. The program can be executed on the
terminal by:

$python combine_score.py

--complexes [ ]

--numstruc [ ]

--scores [ ]

--method [bayes, svm, mc regression]

--yvalue [ ]

--output [ ]

For the prediction of weights, a training set of complexes and the number of sets for
crossvalidation has to be defined with as in the single training scripts:

--complexes trainingset.txt n_crossval

Furthermore, the number and the names of the different scores is given by:

--scores n_scores score_0 · · · score_n
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The files containing the scores must be named .rescore if they just contain a list of
the pure score or .dat when they are in the Attract output format, containing also
the degrees of freedom etc. By the argument --numstruc the number of decoys for
each complex is defined.
The --method for the estimation of the weights can be whether bayes, svm, mc or
regression.
The method bayes uses the given --yvalues from a file to divide the given structures
into two classes ’near-native’ and ’incorrect’ on the given cutoff.

--yvalues quality.file cutoff

As output the program generates a file named Combine_parameter_’outname’.pkl
from which the classifier can be reloaded with the library cPickle in the pro-
gram combine_rescore.py. Furthermore, it stores the deviation σ and the
mean µ of the Gaussian probability distribution for each class in a file named
Combine_parameter_’outname’.par. From these parameters for each class and
feature the probability to be in a certain class can be computed.

For the method svm, the --yvalues and the cutoff has to be provided also
to divide the structures into classes. With the --fitparams the support vector
classifier can further be defined:

--fitparams

• kernel[linear, rbf, polynomial](default=linear)

• cachesize[in MB](default=4000)

• Ci(default=1.)

• calc_prob[bool](default=False)

• tolerance(default=0.001)

The cachesize defines how much cache space will be used for the minimization. The
parameter Ci represents the weight to which strength classification errors contribute
to the cost function of the svm. The parameter calc_prob (∈ {True,False})
defines whether a probability distribution is generated for the classes. The probab-
ility is derived from the decision function of the support vector machine and serves
just as an additional output form. The tolerance adjusts the convergence criteria of
the minimization algorithm. The linear kernel produces a list of parameters for the
decision function in the file Combine_parameter_’outname’.par. The nonlinear ker-
nels rbf and polynomial generate a file named Combine_parameter_’outname’.pkl
which can be reloaded in combine_rescore.py to compute the values of their non-
linear decision function.
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For the method mc the --yvalues have to be given and the type of these val-
ues must be defined. This type can be fnat, lrmsd, irmsd or capstars. The
parameters for the annealing algorithm have to be defined behind the argument
--fitparams:

--fitparams

• targetfunction(’rank’, ’refine’, ’positiontop’, ’simple’,
’positionlinear’, ’positionquadratic’, ’refine-positionlinear’)

• Annealing_function(linear, exponential, ziczac, logarithmic)

• start_temperature

• ∆p_type(normal, adaptive)

• ∆p_size

• MC_steps

The meaning of the parameter for the Monte Carlo annealing algorithm can be
looked up in the manual for training-MC.py.
With the argument --meanscale the different scores can be divided by their mean
to adjust the stepsize of the weights for each type of score. Thus, the change of a
weight will have the same influence on the combined score for each score. Hence, the
parameter space might be sampled more successfully. This division will be respected
in the final output of the weights. As output, a parameter file is generated with the
name Combine_parameter_’outname’.par which can be used directly as weights
for the combination of scores. The development of the target function during the
annealing is stored in Combine_Annealing_’outname’.txt.

For the method regression, only the name of the file containing qualitative
evaluations has to be provided behind the argument --yvalues. Fnat, irmsd, lrmsd
and capstars can be used. The fit is performed of the negative values of the fnat
and the capstars or negative reciprocal value of the irmsd and lrmsd.
In addition, the --regressiontype has to be defined, which can whether be
BayesianRidge, ols, Ridge or svr-robust. A short description for these types of
regression can be found in the manual of training-glm.py or in more detail on
http://scikit-learn.org.
As mentioned above, the different sizes and chemical compositions of the proteins in
all complexes can make a fitting difficult due to the fact that the mean scores will de-
viate. Therefore, the scores can be preprocessed by the argument --preprocessing
[MinMax, complexmean, Standard]. The preprocessing type Standard distributes
the scores for each complex in a Gaussian with a mean 0 and a standard deviation
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of 1. MinMax distributes the scores between 0 and 1 and complexmean divides the
scores for each complex by their mean value.

1.4 Rescoring

1.4.1 grid-rescore.py

The program grid-rescore.py can be used for fast re-scoring on the precalculated
grids. Due to the fact that only simple multiplications have to executed, the rescoring
on grids can be performed much faster than by @rank.py. Nevertheless, time delays
can occur due to the size of the grids which have to be uploaded into the memory,
especially when the program is executed many times on a cluster.
The program is executed by:

$python grid-reevalutation.py pregrid.npy parameter.par

--gridtype

• gridtype [interpolate, distances, step, nonlinear]

• bins

• atomtypes

if ’distances’

◦ r_cut_off

◦ number_bins_power

◦ list_of_bins[. . .]

if ’interpolate’

◦ start

◦ end

◦ stepsize

◦ functiontype

◦ power1

◦ power2

The grid type nonlinear refers to the possibility of using a nonlinear classifier like
svm or naive bayes on a 1-step grid also referred to as contact grid. The parameter
file for these grids is supposed to be binary file which contains the classifier from the
program training-nonlinear-classifier.py.
If distances grids are used, the number of the bins which are summed up for the
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cutoff have to be given first. Secondly, the number of the bins which contain the sums
over distances to different powers and their location have to be defined as described
in the training programs.
For the interpolate grids, the start, the end and the stepsize for the placement
of the nodes has to be given. Furthermore, the functiontype and the power of the
first and the second part of the potential have to be defined. The functiontypes were
explained in training-MC.py, 0 stands for a normal Attract shaped saddle point
potential.
For grids which use the atomistic buried surface area, the bins must be defined as
0. The program simply prints out the rescores. For further use of these scores for
example for combination or the assessment, the files names must end on .rescore.

1.4.2 @rank.py

For the rescoring of decoys without precalculated grids, the program @rank.py is able
to score structures by a LJ-potential (saddlepoint), a step potential, a potential based
on the atomistic surface area, a coulomb interaction, the buried surface area and even
on a combination of these scores. The combination can be linear by given weights or
nonlinear by the use of a classifier. The program uses the Fortran library scorelib.f
which has to be compiled with f2py in advance. The program is executed by:

$python @rank.py

--input coordinate.dat

--proteinmodel model receptor.pdb ligand.pdb

--vdwpotential vdwparameter.par

--steppotential stepparas.par --bins n_bins range_0 · · · range_n

--solvation solparameter.par

--electrostatics

--buriedsa

--combination method combinationweights.par

The degrees of freedom for each decoy are given by the ATTRACT output file
coordinate.dat which is inserted by --input. As in ATTRACT, normal modes,
ensembles and refined structures can be inserted by --modes, --ens and --name.
Each scoring type can be chosen separately or in combination with other functions.
If no combination method is given, the scores are just summed up.
The model for the given pdb’s of the protein constituents can be opls, attract,
tobi, gaa or any. The models opls, attract, tobi and gaa reduce the atom types
to the total number of atom types (for opls f.e. 13). The model any uses as its
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maximum number of atom types the input behind the ligand.pdb. To use any, the
parameter file must contain as many columns and rows as the maximum atom type.

For the scoring by models for van der Waals interactions the parameter file has
to be given by the argument --vdwpotential.
A --shift can be defined which sets every distance between two atoms at least
to that value. By shifting the distances to a certain value, clashes between atoms
will be avoided. Clashes might result from the change of a coarse grained to an
atomistic representation after sampling. In addition, a cutoff can be defined with
--vdwcutoff which is by default set to 100.
For the van der Waals potentials, the --vdwfunctiontype must be chosen attract,
opls or free. attract uses a saddlepoint potential with the powers 8 and 6 whereas
opls uses 12 and 6. Any other potential with other powers can be given by free
power1 power2.
The parameter file for the step potentials is provided by the argument
--steppotential. The bins of the step potential have to be defined by --bins with
the number of bins and their ranges.
The --solvation potential uses its parameter file for the computation of a score
by the atomistic bsA’s. The radius of the probe can be changed with --watersize.
For the coarse grained representation of attract, coarse grained van der Waals radii
may be used with --coarse_grained.
The --electrostatics term uses the charges in the pdb files to calculate a Coulomb
energy between the proteins.
The --buriedsa calculates the negative buried surface area. As for the solvation
term, the --coarse_grained vdw-radii can be used and the radius of the probe can
be changed by --watersize.

The weights for linear combinations or the classifier to combine the different
scores are given by --combination. The method must be defined first. This can be
linear to combine the scores linearly by the determined weights, probability to
estimate the probability for each structure to be in a class, or decisionfunction to
use the distance from the boundary between classes from svm as a score.
For all nonlinear combinations but also for some linear combinations from linear
regression, the normalization of the scores is necessary before combination. There-
fore, --preprocessing can be used. The method can be Standard for a Gaussian
distribution or MinMax for a distribution between 0 and 1 for each score.
The argument --printout serves to print out the final combined scores directly.
--rescore gives out a file ending on -rescore.dat which contains each score and
the combined score in the Attract file format in the orignal order of the Attract dat-
file. --rerank creates such a file ending on -resorted.dat in which the structures
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are resorted after their new score.
A new name for the output can be set by --output.

1.4.3 combine_rescore.py

The program combine_rescore.py combines the given scores from files with a given
set of weights linearly or nonlinearly by trained classifiers. The program is executed
on the terminal by:

$python combine_rescore.py method weights.par

--scores n_scores s1 · · · sn

To receive the correct result, the scores must be in the same order as they were used
when the weights were generated. Usually the order of the scores can be taken from
the header of the file which contains the weights. The method to combine the scores
is defined as linear if weights are used or nonlinear if a binary file with a classifier is
loaded. For many methods it is necessary to normalize the scores before combination,
therefore three methods can be chosen with --preprocessing. Standard makes a
Gaussian distribution, MinMax scales the scores between 0 and 1 and meancomplex
divides them by their mean. The name of the output file can be defined with the
argument --output.

1.5 Assessment of the Performance and Characteristics
of Scoring Functions

1.5.1 scoring_assessment.py

To check out whether a new scoring approach was successful, fast rescoring and a
performance assessment is necessary. The program scoring_assessment.py takes
the scores and a file for the quality assessment of the decoys to evaluate the perform-
ance on the whole benchmark or the training set and the test set. The program can
be executed on the terminal by:

$python scoring_assessment.py

--scores n_scores s1 · · · sn

--evaluate quality.file qualitycut

--benchmark benchmark.file n_cross

--classification classtype classification.txt

--atleast
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--averages

--ROCcurve

--plotstructures

--ROCstructures

The files containing the scores can whether be files ending on .rescore if they
contain only the pure score or files in the Attract output format .dat. The names
of the scores are given by the argument --scores followed by the number of scores
n_scores and their file names.
The qualitative evaluations of the structures are given by using the argument
--evaluate. qualitycut defines the border to divide the structures into near-
native and incorrect solutions based on the values of the quality.file.
For the evaluation, the structures of each complex are sorted after each score separ-
ately. Finally, a binary file is created for each score which contains a step function
showing the number of near-native structures in the set for each rank. By this
procedure, the evaluation must only be performed once for each score and the time
consuming import each time the score is compared can be avoided.

By providing a --benchmark, the output windows will be divided into figures
for the training and the test set. The number n_cross defines how the benchmark
is divided. If n_cross=1 the whole list of complexes will be taken as the training
set and all other folders (complexes) which are not listed are taken as the testset.
For any other value, the last 1/n_cross fraction of the complexes in the list and the
remaining directories in the executive folder are taken as the test set.
With --classification the file classification.txt can be used to sort the
complexes after their difficulty or their proteintype which has to be defined as
the classtype. If --benchmark and --classification are chosen, the program sorts
the complexes after their sets but divides the bars in the --barchart representation
into classes.

To visualize the performances, various modi can be chosen. With --Plotstructures
the step curves for each complex can be regarded. Switching between the complexes
can be done by a slider. The modi --atleast plots the fraction of complexes for
which a near-native complex can be found against its ranks. --averages plots the
average number of near-natives in the decoy set against their rank. Furthermore,
it is possible to use --ROCcurve to plot the fraction of near-natives against the
fraction of incorrect structures. The same can also be done for each complex by
--ROCstructures.
The argument --% causes that the average fraction of near-natives is plotted instead
of the average number for the figure from --averages. By using --double% the
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rank on the abscissa in --atleast and --averages will be changed into the fraction
of decoys in the set.
The argument --barchart creates a bar-chart for the figures of --atleast and
--averages. The bar-chart shows the values for four ranks and fractions of decoys
respectively. Usually, the names for the scores in the legend are taken from their
files. Changing these names can be done by --names name_0 · · · name_n.

1.5.2 scoring_native_assessment.py

The program scoring_native_assessment.py plots the fraction of complexes for
which the native structure was found against its rank in the decoy set. Therefore,
the file’s names of the scores of the decoys are given by the argument --scores. For
the evaluation, a file containing only the native score must be created and named
after the file which contains the scores of the decoy set, supplemented by the ending
-native.rescore.

$python scoring_native_assessment.py

--scores n_scores s1 · · · sn

--benchmark benchmark.file n_cross

--classification classtype classification.txt

As in scoring_assessment.py the plots can be divided into a test and a training
set by the usage of the argument --benchmark or can be divided into classes by the
argument --classification. Just as in scoring_assessment.py the values on the
abscissa can be changed from the absolute rank into the fraction of all decoys by
--double%. As well, it is possible to use --barchart to plot the figure as a bar-chart
for four positions on the abscissa instead as a step function.

1.5.3 correlation_assessment.py

The program correlation_assessment.py evaluates correlations between different
scoring function by comparing sets of well scored structures or by comparison of
their ranking in the decoy set. Therefore, the names for the files with the scores of
the structures have to be provided by --scores. Also a file containing a qualitative
evaluation to define near-native structures has to be defined with the argument
--evaluate.

$python correlation_assessment.py

--scores n_scores s1 · · · sn

--evaluate quality.file qualitycut
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--benchmark benchmark.file n_cross

--classification classtype classification.txt

--Rankerror

--Rankcorr

--topcorr topfraction toptype

--symdifference

--union

--complement

The structures are divided by the quality.file into near-natives and incorrect
solutions and sorted by their scores. The value for qualitycut defines the border
between near-native and incorrect solutions. Using --Rankcorr the correlation of
the ranks of the structures between the scoring functions is generated. --Rankerror
generates a matrix of the mean error between the ranks of the scoring functions.
Both matrices show the correlations between scoring functions based on the ranking
of the structures.
To analyse the correlation on the well scored structures for each scoring function,
subsets of the best scored structures can be compared by --topcorr. For that reason,
the fraction of decoys which will be regarded has to be defined by topfraction
(∈ [0., 1]). Moreover, it has to be determined which structures will be regarded in
the subsets, the good, the bad or all. For the chosen set of structures, a matrix of
the --union, the --symdifference and the --complement between the sets from all
scores is created.

1.5.4 contacts-evaluation.py

The program contacts-evaluation.py is able to evaluate the distribution of con-
tacts in for step or contact potentials as well as the distribution of atomistic buried
surface areas. In addition the program can use the average number of contacts to
evaluate the average contribution of each parameter to the overall scoring perform-
ance. The program is executed by:

$python contacts-evaluation.py

--grid [ ]

--benchmark [ ]

--evaluate [ ]

--normcontacts

--deletezeros
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--nativestructure [ ]

--namelist [ ]

--plotcontact

--plotcontactdist numcontacts

--plotparametercontribution params.par numcontacts

--plotparameter params.par numcontacts

The program uses the precalculated grids with the number of contacts or the buried
surface areas through the argument --grid. A --benchmark can be defined, if the
evaluation should not be executed for the whole benchmark but for certain structures.
The whole benchmark will be taken with the argument --benchmark benchmark.
Since the program evaluates contacts for false and near-native solutions, --evaluate
defines the quality assessment which will be used to divide the structures on the cut
off given on the second position behind the argument. Because of the various sizes
of the complexes and their various average number of contacts, one can normalize
the contacts of each complex by their total average number by --normcontacts.
--deletezeros eliminates complexes from the evaluation which do not possess a
near-native structure in their decoy set. With the argument --naitvestructure
the name of the grid for native structures can be given. From these grids a contact
analysis will be performed for native structures separately. To label the contacts, a
list of names for all the atom or coarse-grained bead types can be passed with the
argument --namelist.
Using the argument --norm the contacts of the near-native and the native struc-
tures are normed to the contacts of the false solutions for a better comparison.
The argument --plotcontact plots the average number of contacts for false, near-
native and native structures sorted after the averages of near-native solutions.
--plotcontactdist only plots the best and worst numcontacts contacts sorted
after the difference between contacts of near-native and false solutions. Through
the argument --plotparametercontribution a set of parameters can be inserted
to multiply them by their average number of contacts and sort them afterwards by
the largest difference between near-native and false solutions to plot the best and
the worst numcontacts contributions. Through the multiplication of each parameter
with its average numbers of contacts, the contribution of each parameter can be
better evaluated since the distribution of atoms and contacts varies from their type.
By sorting the parameter contributions by the contribution’s difference to the near-
native structures, a feeling of the most differentiating parameters can be gained.
Furthermore, only the parameter can be plotted without any normalization by
--plotparameter. Nevertheless, also here --normparameter derives a plot of the
contributions by multiplying them with the average number of their contact type for
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false solutions and --normparameter2 by multiplying them by the difference between
the averages of false and near-native contacts.
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